- #1
Anewk
- 5
- 0
What is the general procedure for using Taylor Series to evaluate:
i) sums
eg.\(\displaystyle \sum_{n=4}^{\infty }\frac{n(n-1)2^n}{3^n}\)
ii) limits
eg. \(\displaystyle \lim_{x\rightarrow 2}\frac{x^2-4}{ln(x-1)}\)
iii) derivatives
eg. Find \(\displaystyle f^{(11)}(0)\) of \(\displaystyle f(x)=x^3sin(x^2)\)
iv) integrals
eg. \(\displaystyle \int_{0}^{1} \frac{1}{2-x^3}dx\)
i) sums
eg.\(\displaystyle \sum_{n=4}^{\infty }\frac{n(n-1)2^n}{3^n}\)
ii) limits
eg. \(\displaystyle \lim_{x\rightarrow 2}\frac{x^2-4}{ln(x-1)}\)
iii) derivatives
eg. Find \(\displaystyle f^{(11)}(0)\) of \(\displaystyle f(x)=x^3sin(x^2)\)
iv) integrals
eg. \(\displaystyle \int_{0}^{1} \frac{1}{2-x^3}dx\)