MHB Taylor's questions at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
AI Thread Summary
The discussion focuses on two related rates problems. The first problem involves calculating the rate at which water is being pumped into an inverted conical tank, accounting for a leak of 10,000 cm³/min and a rising water level of 20 cm/min when the water height is 200 cm. The solution involves using the volume formula for a cone and differentiating it to find the pumping rate, resulting in a formula for R that incorporates the height and rate of change of height. The second problem analyzes the changing distance between two ships, with one moving east at 35 km/h and the other north at 25 km/h, leading to a calculated rate of distance increase of approximately 21.39 km/h at 4:00 pm. Both problems illustrate the application of calculus in real-world scenarios involving rates of change.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Find the rate at which water is being pumped into the tank.?


1.) Water is leaking out of an inverted conical tank at a rate of 10,000 cubic centimeters per minute at the same time that water is being pumped into the tank at a constant rate. The tank has 6m (600 cm) and the diameter of the top is 4m (400 cm). If the water level is rising at a rate of 20 centimeters per minute when the height of the water is 2m (200 cm), find the rate at which water is being pumped into the tank.

2.) At noon, ship A is 150 km due west of ship B. Ship A is sailing east at 35km/h and ship B is sailing North at 25km/h. How fast is the distance between the ships changing at 4:00 pm?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Taylor,

1.) Let all linear measures be in centimeters and time be measured in minutes.

The statement:

"Water is leaking out of an inverted conical tank at a rate of 10,000 cm3/min at the same time that water is being pumped into the tank at a constant rate."

Allows us to write:

$$\frac{dV}{dt}=R-10000$$

Where $V$ is the volume of the water in the tank at time $t$ and $R$ is the rate at which water is being pumped into the tank. $R$ is the quantity we are asked to find.

Using the volume of a cone, we know the volume of the water in the tank may be given by:

$$V=\frac{1}{3}\pi r^2h$$

where $r$ is the radius of the surface of the water, and $h$ is the depth of the water. We know that at any given time or volume of water, the ratio of the radius of the water at the surface to its depth will remain constant, and in fact will be in the same proportions as the tank itself.

Because we are given information regarding the time rate of change of the depth and the depth itself, we need to place the radius with a function of the depth. Hence, we may use:

$$\frac{r}{h}=\frac{2}{6}=\frac{1}{3}\implies r=\frac{h}{3}$$

And so the volume as a function of $h$ is:

$$V=\frac{1}{3}\pi \left(\frac{h}{3} \right)^2h=\frac{\pi}{27}h^3$$

Now, differentiating with respect to $t$, we obtain:

$$\frac{dV}{dt}=\frac{\pi}{9}h^2\frac{dh}{dt}$$

Equating the two expressions for $$\frac{dV}{dt}$$, we find:

$$\frac{\pi}{9}h^2\frac{dh}{dt}=R-10000$$

Solving for $R$, we get:

$$R=\frac{\pi}{9}h^2\frac{dh}{dt}+10000$$

Now, using the given data (making sure all of our units match):

$$h=200\text{ cm},\,\frac{dh}{dt}=20\,\frac{\text{cm}}{\text{min}}$$

We have:

$$R=\frac{\pi}{9}\left(200\text{ cm} \right)^2\left(20\,\frac{\text{cm}}{\text{min}} \right)+10000\,\frac{\text{cm}^3}{\text{min}}$$

$$R=\frac{10000}{9}\left(80\pi+9 \right)\,\frac{\text{cm}^3}{\text{min}}$$

2.) Let's orient our coordinate axes such that ship A is at the origin at noon, and so ship B is at $(150,0)$. Thus, we may describe the position of each ship parametrically as follows:

Ship A:

$$x=35t$$

$$y=0$$

Ship B:

$$x=150$$

$$y=25t$$

If we let $D$ be the distance between the ships at time $t$, we may use the distance formula to write:

$$D^2(t)=(35t-150)^2+(25t)^2=50\left(37t^2-210t+450 \right)$$

Implicitly differentiating with respect to $t$, we find:

$$2D(t)D'(t)=50(74t-210)=100(37t-105)$$

Hence:

$$D'(t)=\frac{50(37t-105)}{D(t)}=\frac{\sqrt{50}(37t-105)}{\sqrt{37t^2-210t+450}}$$

At 4:00 pm, we have $t=4$, and so we find:

$$D'(4)=\frac{\sqrt{50}(37(4)-105)}{\sqrt{37(4)^2-210(4)+450}}=\frac{215}{\sqrt{101}}\,\frac{\text{km}}{\text{hr}}$$

Thus, at 4:00 pm the distance between the ships is increasing at a rate of about 21.3933 kph.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top