- #1
yamata1
- 61
- 1
- Homework Statement
- The fluid is a perfect gas. Constant pressure heating is broken down into two stages:
- an elementary transformation AB which is a heating at constant volume, during which
temperature and pressure vary by ##\delta T_V## and ##\delta P_V##.
-an elementary transformation BC which is a reversible adiabatic relaxation, during
which the temperature and the pressure vary respectively from ##\delta T_S## and ##\delta P=-\delta P_V##
1-Express ##\delta P_V ## as a function of ##\delta T_V##,T and P
2-Express ##\delta T_S## as a function of ##\delta P_V##,T , P and ##\gamma=\frac{C_p}{C_v}## then as a function of ##\delta T_V## and ##\gamma##.
- Relevant Equations
- ##PV^{\gamma}=cst\; \; \; \; \;TV^{\gamma -1}=cst## and ##TP^{\frac{1-\gamma }{\gamma}}=cst##
PV=nRT , dU=TdS-PdV ,##\delta Q=C_V\deltaT## , ##\delta V =(\frac{\partial V}{\partial T})_P \delta T+(\frac{\partial V}{\partial P})_T \delta P##
1- ##\delta P_V =(\frac{\partial P}{\partial T} )_V \delta T_V##
2-##\delta V =(\frac{\partial V}{\partial T})_P \delta T+(\frac{\partial V}{\partial P})_T \delta P## so ##C_v \delta T=-P\delta V=-P((\frac{\partial V}{\partial T})_P \delta T+(\frac{\partial V}{\partial P})_T \delta P)## I can replace ##-P((\frac{\partial V}{\partial T})_P \delta T)=nR\delta T## since we have an ideal gas and make ##\gamma## appear that way.
Is there some other equation I am forgetting ?
Thank you
2-##\delta V =(\frac{\partial V}{\partial T})_P \delta T+(\frac{\partial V}{\partial P})_T \delta P## so ##C_v \delta T=-P\delta V=-P((\frac{\partial V}{\partial T})_P \delta T+(\frac{\partial V}{\partial P})_T \delta P)## I can replace ##-P((\frac{\partial V}{\partial T})_P \delta T)=nR\delta T## since we have an ideal gas and make ##\gamma## appear that way.
Is there some other equation I am forgetting ?
Thank you
Last edited: