Temperature related fermi-levels

  • Thread starter Zymandia
  • Start date
  • Tags
    Temperature
In summary, the effect on fermi-levels of a semi-conductor bandgap or fermion forbidden zone (FFZ) in an idealized density of states (DOS) can lead to a non-symmetric Fermi-Dirac distribution and a shift in the average chemical potential with temperature. This effect is rarely observed in real solids, as it typically requires temperatures well above the boiling point of the material. However, in cases where there is a FFZ close to the 0 K fermi level, it can result in an unusual specific heat curve.
  • #1
Zymandia
36
0
Considering the effect on fermi-levels of a semi-conductor bandgap or fermion forbidden zone (FFZ) in an idealized density of states (DOS).
Let's assume there is a bandgap just below the fermi-level say 4 meV, and that the temp. is such that FD distribution predicts +/- 10meV of thermal energy range. But -10meV is forbidden, -4meV is the lowest allowed by the FFZ.
It seems clear that the FD distribution can no longer be symmetric about the 0 K fermi-level, suggesting that the average must rise. So the fermi-level must rise with temperature.
A similar process with a FFZ just above the fermi-level inhibitting higher thermal energies should result in a fermi-level that decreases with temperature.
What is this effect called and have any experimental examples of either been found?
 
Physics news on Phys.org
  • #2
Just being pedantic: the Fermi energy is independent of temperature, because it's defined as the chemical potential at zero temperature. But your intuition is correct; the chemical potential is a function of temperature. You don't even need a gap near the Fermi level for this to happen, structure in the density of states will cause the chemical potential to shift as temperature changes.

For real solids this is rarely a concern. Typically in order to see a measurable shift in the chemical potential for Fermions you need to have a temperature well above the boiling point of your material.
 
  • #3
I'm aware that there is a slight temperature dependence of chemical energy in normal lattices, however it is the change in what would normally be a fermi-dirac distribution caused by a FFZ close to the 0 K fermi level that interests me. For instance it should give an odd specific heat curve.
 

FAQ: Temperature related fermi-levels

1. What is a fermi-level?

The fermi-level is a concept in physics that represents the energy level at which the probability of finding an electron is 50%. It is an important concept in understanding the behavior of electrons in materials.

2. How is the fermi-level related to temperature?

The fermi-level is dependent on temperature, as temperature affects the energy levels of electrons in a material. As temperature increases, the fermi-level also increases, and vice versa.

3. What is the significance of temperature-related fermi-levels?

Temperature-related fermi-levels are important in understanding the electrical and thermal properties of materials. They can help determine the behavior of electrons in a material, such as their conductivity and energy distribution.

4. How do temperature-related fermi-levels impact semiconductor devices?

In semiconductor devices, temperature-related fermi-levels can affect the number of electrons available for conduction, which in turn affects the device's performance. They can also influence the formation of electron-hole pairs, which are essential for the operation of semiconductor devices.

5. How do scientists study temperature-related fermi-levels?

Scientists use various techniques such as spectroscopy and thermal analysis to study the behavior of electrons and the fermi-level at different temperatures. These techniques provide valuable insights into the properties of materials and their potential applications in electronic devices.

Back
Top