Tension in Cable: Solving Using Trig

In summary, to find the tension in the cable supporting a 36.0 kg uniform beam attached to a wall with a hinge and at an angle of 69.0°, one can use torque about the hinge and basic trigonometry. However, since the cable is not attached to the center of mass of the beam, further calculations may be necessary.
  • #1
ChaosCon343
7
0

Homework Statement



A 36.0 kg uniform beam is attached to a wall with a hinge while its far end is supported by a cable such that the beam is horizontal.

http://a1.educog.com/res/msu/physicslib/msuphysicslib/24_Statics_Equilibrium/graphics/prob20_beamhinge2.gif

If the angle between the beam and the cable is θ = 69.0° what is the tension in the cable?

Homework Equations


Unknown other than basic trigonometry

The Attempt at a Solution


I tried using simple trigonometry; Cos(69)=(36*g)/h, but to no avail. I believe the reason it didn't work to be because the cable is not attached to the bar's center of mass, but I've no idea how to correct this. A point in the right direction would be greatly appreciated!
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Use torque about hinge.
 
  • #3


Dear student,

Thank you for sharing your attempt at solving this problem. It seems like you have the right idea, but as you mentioned, the cable is not attached to the beam's center of mass, which means the center of mass is not directly below the point where the cable is attached. This creates a moment arm, which must be taken into account in your calculations.

To solve this problem, you can use the concept of static equilibrium, which means that the sum of all forces and torques acting on the beam must equal zero. In this case, the only external force acting on the beam is the tension in the cable, and the only torque is the one created by the weight of the beam. This torque can be calculated by multiplying the weight of the beam (36.0 kg * 9.8 m/s^2) by the distance from the hinge to the center of mass of the beam.

Once you have this information, you can set up an equation that takes into account the horizontal and vertical components of the tension in the cable, as well as the torque created by the weight of the beam. From there, you can solve for the unknown tension in the cable.

I hope this helps guide you in the right direction. Keep in mind that understanding and applying concepts of static equilibrium is crucial in solving problems like this. Best of luck with your studies!
 

FAQ: Tension in Cable: Solving Using Trig

What is tension in a cable?

Tension in a cable is the amount of force that is pulling on the cable. It is typically measured in units of newtons (N) or pounds (lbs).

How is tension in a cable calculated using trigonometry?

Tension in a cable can be calculated using the formula T = F * cos(theta), where T is the tension, F is the force applied to the cable, and theta is the angle between the cable and the direction of the force.

What is the relationship between tension and the angle of the cable?

The relationship between tension and the angle of the cable is that as the angle of the cable increases, the tension also increases. This is because the force applied to the cable is being spread out over a larger distance, resulting in a greater tension.

How does the weight of an object affect the tension in a cable?

The weight of an object does not directly affect the tension in a cable. However, if the object is hanging from the cable, its weight will need to be taken into account when calculating the force applied to the cable.

Can tension in a cable ever be negative?

No, tension in a cable can never be negative. Negative tension would imply that the cable is being pushed instead of pulled, which is not physically possible.

Similar threads

Replies
10
Views
4K
Replies
6
Views
3K
Replies
2
Views
13K
Replies
1
Views
2K
Replies
2
Views
6K
Replies
5
Views
7K
Back
Top