- #1
- 2,168
- 193
- Homework Statement
- Calculating tensor equations
- Relevant Equations
- Tensor Identities
Let us suppose we are given two vectors ##A## and ##B##, their components ##A^{\nu}## and ##B^{\mu}##. We are also given a minkowski metric ##\eta_{\alpha \beta} = \text{diag}(-1,1,1,1)##
In this case what are the
a) ##A^{\nu}B^{\mu}##
b) ##A^{\nu}B_{\mu}##
c) ##A^{\nu}B_{\nu}##
For part (a), it seems that we are going to obtain a 4x4 matrix with components
$$A^{\nu}B^{\mu} = \begin{bmatrix}
A^0B^0 & ... & A^0B^3 \\
A^1B^0 & ... & A^1B^3\\
A^2B^0 & ... & A^2B^3 \\
A^3B^0 & ... & A^3B^3\\
\end{bmatrix}$$
For part (b) I have written something like this
$$A^{\nu}B^{\gamma}\eta_{\mu \gamma} = D^{\nu}_{\mu} =
\begin{bmatrix}
A^0B^0\eta_{00} & A^0B^1\eta_{11} & A^0B^2\eta_{22} & A^0B^3\eta_{33}\\
A^1B^0\eta_{00} & A^1B^1\eta_{11} & A^1B^2\eta_{22} & A^1B^3\eta_{33}\\
A^2B^0\eta_{00} & A^2B^1\eta_{11} & A^2B^2\eta_{22} & A^2B^3\eta_{33}\\
A^3B^0\eta_{00} & A^3B^1\eta_{11} & A^3B^2\eta_{22} & A^3B^3\eta_{33}\\
\end{bmatrix}$$Actually the ##D^{0}_{0}## becomes ## = A^0B^0\eta_{00} + A^0B^1\eta_{01} + A^0B^2\eta_{02} + A^0B^3\eta_{03}## but that is just ##A^0B^0\eta_{00}##
For part c its just the sum I guess so I need to write
##A^{\nu}B_{\nu} = A^{\nu}B^{\gamma}\eta_{\nu \gamma} = A^0B^0\eta_{00} + A^1B^1\eta_{11} + A^2B^2\eta_{22} + A^3B^3\eta_{33}##
Are these expressions ttrue ?
If I do something like this
##B_{\mu} = \eta_{\mu \nu}B^{\nu}## and write ##B_{\mu} = (-B^0, B^1, B^2, B^3)## and just multiply this with ##A^{\nu}## I would have got the same result right ?
In this case what are the
a) ##A^{\nu}B^{\mu}##
b) ##A^{\nu}B_{\mu}##
c) ##A^{\nu}B_{\nu}##
For part (a), it seems that we are going to obtain a 4x4 matrix with components
$$A^{\nu}B^{\mu} = \begin{bmatrix}
A^0B^0 & ... & A^0B^3 \\
A^1B^0 & ... & A^1B^3\\
A^2B^0 & ... & A^2B^3 \\
A^3B^0 & ... & A^3B^3\\
\end{bmatrix}$$
For part (b) I have written something like this
$$A^{\nu}B^{\gamma}\eta_{\mu \gamma} = D^{\nu}_{\mu} =
\begin{bmatrix}
A^0B^0\eta_{00} & A^0B^1\eta_{11} & A^0B^2\eta_{22} & A^0B^3\eta_{33}\\
A^1B^0\eta_{00} & A^1B^1\eta_{11} & A^1B^2\eta_{22} & A^1B^3\eta_{33}\\
A^2B^0\eta_{00} & A^2B^1\eta_{11} & A^2B^2\eta_{22} & A^2B^3\eta_{33}\\
A^3B^0\eta_{00} & A^3B^1\eta_{11} & A^3B^2\eta_{22} & A^3B^3\eta_{33}\\
\end{bmatrix}$$Actually the ##D^{0}_{0}## becomes ## = A^0B^0\eta_{00} + A^0B^1\eta_{01} + A^0B^2\eta_{02} + A^0B^3\eta_{03}## but that is just ##A^0B^0\eta_{00}##
For part c its just the sum I guess so I need to write
##A^{\nu}B_{\nu} = A^{\nu}B^{\gamma}\eta_{\nu \gamma} = A^0B^0\eta_{00} + A^1B^1\eta_{11} + A^2B^2\eta_{22} + A^3B^3\eta_{33}##
Are these expressions ttrue ?
If I do something like this
##B_{\mu} = \eta_{\mu \nu}B^{\nu}## and write ##B_{\mu} = (-B^0, B^1, B^2, B^3)## and just multiply this with ##A^{\nu}## I would have got the same result right ?
Last edited: