- #1
Dustinsfl
- 2,281
- 5
\begin{alignat*}{3}
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.