- #1
oshilinawa
- 1
- 0
Homework Statement
Suppose that [tex][\sigma_a]_{ij}[/tex] and [tex][\eta_a]_{xy}[/tex] are Pauli matrices in two different two dimensional spaces. In the four dimensional tensor product space, define the basis:
[tex]|1\rangle=|i=1\rangle|x=1\rangle[/tex]
[tex]|2\rangle=|i=1\rangle|x=2\rangle[/tex]
[tex]|3\rangle=|i=2\rangle|x=1\rangle[/tex]
[tex]|4\rangle=|i=2\rangle|x=2\rangle[/tex]
Write out the matrix elements of [tex]\sigma_2\otimes\eta_1[/tex]
Homework Equations
[tex]\sigma_a\sigma_b=\delta_{ab} + i\epsilon_{abc}\sigma_c[/tex]
The Attempt at a Solution
I know that that [tex]\sigma_2\otimes\sigma_1=\begin{bmatrix}0&0&0&-i\\0&0&-i&0\\0&i&0&0\\i&0&0&0\end{bmatrix}[/tex]
And [tex]\langle i,x| \sigma_2\otimes\eta_1|j,y\rangle = \langle i| \sigma_2|j\rangle \langle x| \eta_1|y\rangle[/tex]
I'm just confused about the matrices being in different spaces, how do I use the defined basis to calculate the matrix elements? I suspect I need the formula given as a relevant equation, but how can I use it with matrices in different spaces.
I'm doing self study with Georgi - Lie Algebras.