- #1
Maybe_Memorie
- 353
- 0
Homework Statement
I have the operators
##D_{\beta}:V_{\beta}\rightarrow V_{\beta}##
##R_{\beta\alpha 1}: V_{\beta} \otimes V_{\alpha 1} \rightarrow V_{\beta}\otimes V_{\alpha 1}##
##R_{\beta\alpha 2}: V_{\beta} \otimes V_{\alpha 2} \rightarrow V_{\beta}\otimes V_{\alpha 2}##
where each of the vector spaces are copies of ##\mathbb{C}^2##
Homework Equations
The Attempt at a Solution
I want to write the product ##D_{\beta}R_{\beta\alpha 1}R_{\beta\alpha 2}##, which makes sense on the space ##V_{\beta} \otimes V_{\alpha 1} \otimes V_{\alpha 2}##.
So I order to act on the full space I write ##D## as ##D_{\beta}\otimes I_{\alpha 1} \otimes I_{\alpha 2}##
and write ##R_{\beta\alpha 1}## as ##R_{\beta\alpha 1} \otimes I_{\alpha 2}##, where ##I_{\alpha 1}## and ##I_{\alpha 2}## are the identity operators in ##V_{\alpha 1}## and ##V_{\alpha 2}##.
My problem is that I don't know how to write ##R_{\beta\alpha 2}## since I'd basically have to stick and identity "in the middle".