- #1
Dahaka14
- 73
- 0
Sorry for notation guys, but I don't know how to use LaTex.
True or false, there exists a vector v (or set of vectors) in R3 such that v*v = ||v|| (v dot v equals the magnitude of v).
At first I thought this was false, but then I considered an arbitrary unit vector v=(1/(14)/\(-1/2)*(1,2,3)...in words: one over the square root of fourteen times the vector one, two, three (the unit vector of (1,2,3)).
Taking v*v, u get (1*1)/14 + (2*2)/14 + (3*3)/14 = 1/14 + 4/14 + 9/14 = 14/14 = 1, which is trivial for a unit vector. Also, the magnitude is just the square root of this answer, since the components are already squared for dotting itself, which is one; again, trivial. Am I correct or can I not consider a unit vector?
Homework Statement
True or false, there exists a vector v (or set of vectors) in R3 such that v*v = ||v|| (v dot v equals the magnitude of v).
Homework Equations
At first I thought this was false, but then I considered an arbitrary unit vector v=(1/(14)/\(-1/2)*(1,2,3)...in words: one over the square root of fourteen times the vector one, two, three (the unit vector of (1,2,3)).
The Attempt at a Solution
Taking v*v, u get (1*1)/14 + (2*2)/14 + (3*3)/14 = 1/14 + 4/14 + 9/14 = 14/14 = 1, which is trivial for a unit vector. Also, the magnitude is just the square root of this answer, since the components are already squared for dotting itself, which is one; again, trivial. Am I correct or can I not consider a unit vector?