- #36
Imafungi
- 28
- 0
DrChinese said:First, no one actually understands the underlying mechanism by which entanglement works. That is why there are multiple interpretations. From 1935 until Bell's Theorem, your local realistic explanation was considered one possible interpretation (the EPR interpretation for lack of a better name).
However, Bell showed that interpretation to be flawed. The EPR interpretation has since been proven incorrect many times over in experiment. Until you read and understand Bell, you won't make any progress towards understanding WHY the EPR interpretation is wrong. Better yet, read the EPR paper first and then Bell.
BTW: In QM, the ordering of the measurements on Alice and Bob (particles 1 and 2) do not affect the outcome in any discernible fashion.
Bells theorem doesn't say anything about this more intuitive and rational interpretation being impossible, do you have an example of an experiment or logical argument which proves this analogy is not appropriate in regards to 'quantum entanglement experiments'?:
There is a red ball and a blue ball. You and I are in another room blindfolded. A random person walks in the room with the red ball and blue ball and puts each in a bag. You and I walk in the room and each grab a bag. I go to the moon. You stay there. We know without looking that the results will be 1 red ball and 1 blue ball. I look in my bag on the moon, and its the blue ball. I instantly know that your ball is the red ball.
If this analogy can be used to describe every entanglement experiment, the analogy would be related to the 'spooky entanglement interpretation'; I got my bag and you get your bag. I go to the moon. Before I or your look in our bags, I have a red/blue ball in my bag, and you have a red/blue ball in your bag. When the bags were in the same room before they were separated, they were entangled. When I looked in my bag the red/blue ball turned into a blue ball, which then faster than the speed of light, notified your red/blue ball to turn into a red ball.