- #1
brettng
- 17
- 0
- Homework Statement
- Problem 2.3 (See screen capture below)
- Relevant Equations
- $$\frac{d^2 z(t)}{dt^2} + \Gamma \frac{d z(t)}{dt} + \omega^2_0 z(t) = \frac{\mathcal{F} (t)}{m}$$
Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/
Chapter 2 - Problem 2.3 [Page 52] (see screen capture below)
Question: In Problem 2.3, I have proved the hint equation, and it leads to the complex equation of motion to become $$\frac{d^2 z(t)}{dt^2} + \omega^2_0 z(t) = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) e^{-i \omega_0 t}$$
Then, I try a complex solution as usual, but this time with a time-dependent amplitude, ##z(t) = \mathcal{A}(t) e^{-i \omega_0 t}##. This could simplify the complex equation of motion to $$\frac{d^2 \mathcal{A}(t)}{dt^2} - i2 \omega_0 \frac{\mathcal{A}(t)}{dt} = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) = \frac{f_0}{m} \cos (\delta t)$$
At this stage, I try a complex form for the time-dependent amplitude ##\mathcal{A}(t) = A\cos (\delta t) + iB \sin (\delta t)##. The complex equation of motion would further be simplified into real and imaginary parts: $$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) + (-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = \frac {f_0}{m} \cos (\delta t)$$
By setting the following equations:
$$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) = \frac {f_0}{m} \cos (\delta t)$$
and
$$(-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = 0$$
We can solve that ##A = \frac {f_0}{m} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)## and ##B = \frac {2 \omega_0 f_0}{m \delta} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)##.
Finally, by using ##z(t) = \left[ A\cos (\delta t) + iB \sin (\delta t) \right] \left[ \cos (\omega_0 t) - i \sin (\omega_0 t) \right]##, we can solve the exact real displacement for nonzero ##\delta## :
$$x(t) = \frac {f_0 \cos (\delta t)}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\omega_0 t) + \frac {2 f_0 \omega_0 \sin (\delta t)}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\omega_0 t)$$
Therefore, answering the question,
$$\alpha (t) = \frac {f_0}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\delta t)$$
and
$$\beta (t) = \frac {2 f_0 \omega_0}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\delta t)$$.
Question 1: Do I get the correct answer for this Problem question?
Question 2: What does the meaning of "for ##\delta## nonzero to leading order in ##\delta / \omega_0##" as shown in the problem question (see the screen capture)? Because in my approach, I did not use this criteria and I could find the exact solution for nonzero ##\delta##.
Question 3: In simple cases (i.e. sinusoidal force with constant amplitude; e.g. ##f_0 e^{-i \omega_0 t}##), we could try the solution by directly copying the force complex component (e.g. ##A(t) e^{-i \omega_0 t}##) as demonstrated in Chapter 2 of the reference book. In my approach above, it shows that we could not use such technique directly, just because the amplitude is also time-dependent (which makes the time derivative parts complicated). Therefore, we need to use some slightly different approach for this Problem case. Does my view correct?
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/
Chapter 2 - Problem 2.3 [Page 52] (see screen capture below)
Question: In Problem 2.3, I have proved the hint equation, and it leads to the complex equation of motion to become $$\frac{d^2 z(t)}{dt^2} + \omega^2_0 z(t) = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) e^{-i \omega_0 t}$$
Then, I try a complex solution as usual, but this time with a time-dependent amplitude, ##z(t) = \mathcal{A}(t) e^{-i \omega_0 t}##. This could simplify the complex equation of motion to $$\frac{d^2 \mathcal{A}(t)}{dt^2} - i2 \omega_0 \frac{\mathcal{A}(t)}{dt} = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) = \frac{f_0}{m} \cos (\delta t)$$
At this stage, I try a complex form for the time-dependent amplitude ##\mathcal{A}(t) = A\cos (\delta t) + iB \sin (\delta t)##. The complex equation of motion would further be simplified into real and imaginary parts: $$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) + (-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = \frac {f_0}{m} \cos (\delta t)$$
By setting the following equations:
$$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) = \frac {f_0}{m} \cos (\delta t)$$
and
$$(-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = 0$$
We can solve that ##A = \frac {f_0}{m} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)## and ##B = \frac {2 \omega_0 f_0}{m \delta} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)##.
Finally, by using ##z(t) = \left[ A\cos (\delta t) + iB \sin (\delta t) \right] \left[ \cos (\omega_0 t) - i \sin (\omega_0 t) \right]##, we can solve the exact real displacement for nonzero ##\delta## :
$$x(t) = \frac {f_0 \cos (\delta t)}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\omega_0 t) + \frac {2 f_0 \omega_0 \sin (\delta t)}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\omega_0 t)$$
Therefore, answering the question,
$$\alpha (t) = \frac {f_0}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\delta t)$$
and
$$\beta (t) = \frac {2 f_0 \omega_0}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\delta t)$$.
Question 1: Do I get the correct answer for this Problem question?
Question 2: What does the meaning of "for ##\delta## nonzero to leading order in ##\delta / \omega_0##" as shown in the problem question (see the screen capture)? Because in my approach, I did not use this criteria and I could find the exact solution for nonzero ##\delta##.
Question 3: In simple cases (i.e. sinusoidal force with constant amplitude; e.g. ##f_0 e^{-i \omega_0 t}##), we could try the solution by directly copying the force complex component (e.g. ##A(t) e^{-i \omega_0 t}##) as demonstrated in Chapter 2 of the reference book. In my approach above, it shows that we could not use such technique directly, just because the amplitude is also time-dependent (which makes the time derivative parts complicated). Therefore, we need to use some slightly different approach for this Problem case. Does my view correct?