- #1
karush
Gold Member
MHB
- 3,269
- 5
Whitman 8.3.12
$$\int \frac{{x}^{3 }}{\sqrt{4x ^2 - 1}} \ dx =
\frac{\left(2{x}^{2}+1\right)\sqrt{4{x}^{2}-1}}{24}$$
$$u=4x^2 - 1 \ \ \ \ du=8x \ dx \ \ \ x=\left(\frac{u-1}{4 }\right)^\frac{1}{2}$$
Substitute and simplify
$$\frac{1}{32}\displaystyle \int\dfrac{u+1}{\sqrt{u}}\,\mathrm{d}u$$
$$\int \frac{{x}^{3 }}{\sqrt{4x ^2 - 1}} \ dx =
\frac{\left(2{x}^{2}+1\right)\sqrt{4{x}^{2}-1}}{24}$$
$$u=4x^2 - 1 \ \ \ \ du=8x \ dx \ \ \ x=\left(\frac{u-1}{4 }\right)^\frac{1}{2}$$
Substitute and simplify
$$\frac{1}{32}\displaystyle \int\dfrac{u+1}{\sqrt{u}}\,\mathrm{d}u$$
Last edited: