- #1
Jenab6
- 11
- 0
Here's an assessment of the feasibility of diverting asteroid 1981 Midas into a collision with Earth in the year 2018. I'm posting this to show the potential military-political advantage to controlling access to space.
Note the relatively small size of the divert delta-vee. Only about 301.5 meters per second will cause the asteroid to shift into a collision course.
Elements used for Earth.
a = 1.0000001124 AU
e = 0.0167102192
i = 0
L = 0
w = 103.078101 degrees
T = JD 2454468.667 (4:00:29 UT, 3 January 2008)
Elements used for 1981 Midas.
a = 1.7761208686 AU
e = 0.6501608192
i = 39.835472411 degrees
L = 357.03080224 degrees
w = 267.74138625 degrees
T = 2453926.666 (3:59:02 UT, 10 July 2006)
Midas divert delta-vee.
dV = 301.4552 m/s
RA = 17h 19m 45.192s
dec= -48.6042 degrees
Td = JD 2457809.620 (2:52:48 UT, 25 February 2017)
Transfer orbit is an ellipse with aphelion at departure.
Elements of the Midas transfer orbit.
a = 1.776419 AU
e = 0.6495124
i = 39.82184 degrees
L = 356.6238 degrees
w = 267.1621 degrees
T = JD 2457377.22 (17:16:48 UT, 20 December 2015)
Minimum distance between Earth's orbit and the Midas transfer orbit: 97.8 km
Minimum distance occurs at heliocentric longitude: 176.623768 degrees
Transit time = 384.379 days.
Impact on Earth at JD 2458194.0 (12h UT, 16 March 2018)
Midas approaches Earth from approximately
RA = 14h 2m
dec= +35.1 degrees
Facing Midas on arrival is: The North Pacific Ocean.
A vertical impact could occur: NE of Hawaii, S of Valdez AK, W of Los Angeles CA.
Midas' diameter: 3.4 kilometers
Assumed density: 2200 kg/m^3
Estimated mass: 4.5E+13 kilograms
Arrival speed in transfer orbit: 28.304 km/sec
Impact speed: 30.432 km/sec
Impact energy: 2.1E+22 Joules = 5.0 teratons TNT equivalent.
Jerry Abbott
Note the relatively small size of the divert delta-vee. Only about 301.5 meters per second will cause the asteroid to shift into a collision course.
Elements used for Earth.
a = 1.0000001124 AU
e = 0.0167102192
i = 0
L = 0
w = 103.078101 degrees
T = JD 2454468.667 (4:00:29 UT, 3 January 2008)
Elements used for 1981 Midas.
a = 1.7761208686 AU
e = 0.6501608192
i = 39.835472411 degrees
L = 357.03080224 degrees
w = 267.74138625 degrees
T = 2453926.666 (3:59:02 UT, 10 July 2006)
Midas divert delta-vee.
dV = 301.4552 m/s
RA = 17h 19m 45.192s
dec= -48.6042 degrees
Td = JD 2457809.620 (2:52:48 UT, 25 February 2017)
Transfer orbit is an ellipse with aphelion at departure.
Elements of the Midas transfer orbit.
a = 1.776419 AU
e = 0.6495124
i = 39.82184 degrees
L = 356.6238 degrees
w = 267.1621 degrees
T = JD 2457377.22 (17:16:48 UT, 20 December 2015)
Minimum distance between Earth's orbit and the Midas transfer orbit: 97.8 km
Minimum distance occurs at heliocentric longitude: 176.623768 degrees
Transit time = 384.379 days.
Impact on Earth at JD 2458194.0 (12h UT, 16 March 2018)
Midas approaches Earth from approximately
RA = 14h 2m
dec= +35.1 degrees
Facing Midas on arrival is: The North Pacific Ocean.
A vertical impact could occur: NE of Hawaii, S of Valdez AK, W of Los Angeles CA.
Midas' diameter: 3.4 kilometers
Assumed density: 2200 kg/m^3
Estimated mass: 4.5E+13 kilograms
Arrival speed in transfer orbit: 28.304 km/sec
Impact speed: 30.432 km/sec
Impact energy: 2.1E+22 Joules = 5.0 teratons TNT equivalent.
Jerry Abbott