- #1
Jaccobtw
- 163
- 32
- Homework Statement
- In earlier learning sequences we described how a static magnetic field cannot change the speed (and therefore kinetic energy) of a free charged particle. A changing magnetic field can, and this is one way particle beams are accelerated. Consider free protons following a circular path in a uniform magnetic field with a radius of 1m. At t=0s, the magnitude of the uniform magnetic field begins to increase at 0.001T/s. Enter the tangential acceleration of the protons in m/s^2: positive if they speed up and negative if they slow down.
- Relevant Equations
- $$F = qvBsin\theta$$
$$ r = \frac{mv}{qB}$$
$$\Phi = \int B \cdot dA$$
If we increase the magnetic field, the radius of the particle's circular path will decrease which increases the tangential acceleration. How do I find the tangential acceleration. Do I use derivatives?