- #1
LikeMath
- 62
- 0
Hi,
If I have an additive function which is [itex]f(x+y)=f(x)+f(y)[/itex],
the question is
how can we prove that if this function has a limit at each real number then there is a number a greater than zero and M greater than zero
such that
[itex]|f(x)|\leq M[/itex], for all [itex]x\in[-a,a][/itex],
If I have an additive function which is [itex]f(x+y)=f(x)+f(y)[/itex],
the question is
how can we prove that if this function has a limit at each real number then there is a number a greater than zero and M greater than zero
such that
[itex]|f(x)|\leq M[/itex], for all [itex]x\in[-a,a][/itex],