I The atomic Coulomb potential extends to infinity?

aaronll
Messages
23
Reaction score
4
I'm studying nuclear physics in a text, but at one point that is said: "Both the Coulomb potential that binds the atom and the resulting electronic charge distribution extends to infinity" , I don't understand what is that "resulting electronic charge distribution extends to infinity" what they mean? ( maybe I misunderstand the phrase but i don't know)
thanks
 
Last edited by a moderator:
Physics news on Phys.org
aaronll said:
I'm studying nuclear physics in a text, but at one point that is said: "Both the Coulomb potential that binds the atom and the resulting electronic charge distribution extends to infinity" , I don't understand what is that "resulting electronic charge distribution extends to infinity" what they mean? ( maybe I misunderstand the phrase but i don't know)
thanks

I assume by "charge distribution" it means the wave-function for the electron. And, theoretically the spatial wave-function for the electron is non-zero everywhere. I.e. no matter how far the distance from the nucleus, there is still a non-zero probability of detecting the electron there.

In practical terms, of course, the electron probability distribution drops off to nearly zero very quickly - of the order of magnitude of a few times the Bohr radius.
 
  • Like
Likes Lord Jestocost, vanhees71 and aaronll
PeroK said:
I assume by "charge distribution" it means the wave-function for the electron. And, theoretically the spatial wave-function for the electron is non-zero everywhere. I.e. no matter how far the distance from the nucleus, there is still a non-zero probability of detecting the electron there.

In practical terms, of course, the electron probability distribution drops off to nearly zero very quickly - of the order of magnitude of a few times the Bohr radius.
Thank you
 
Which text is this? I guess, I'll like to avoid its use ;-)).
 
vanhees71 said:
Which text is this? I guess, I'll like to avoid its use ;-)).
Is the "Introduction to Nuclear Physics" written by Kennet S. Krane, I believe is a good book
 
Yes, I like it too, but are there really such statements as that the long-ranged nature of the Coulomb potential of the nucleus in an atom were "resulting electronic charge distribution extends to infinity"? That doesn't make sense or at least hints at an pretty unusual interpretation of the (energy-eigen) wave functions of the electron(s) in atoms. It sounds something like Schrödinger's very first interpretation of his ##\psi(t,\vec{x})## before Born's probabilistic interpretation. Even then it's strange since as the hydrogen wave functions show, the bound states all fall exponentially for ##r \rightarrow \infty##, and from that the typical atomic length scales are determined by the Born radius of about ##0.5 \mathring{\text{A}}##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top