- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We consider the $\mathbb{F}_2$-vector space $(2^M, +, \cap)$, where $M$ is non-empty set and $+ : 2^M\times 2^M \rightarrow 2^M: (X,Y)\mapsto (X\cup Y)\setminus (X\cap Y)$.
I want to show that $(2^M, +, \cap )$ for $\mathbb{K}=\{\emptyset , M\}$ satisfies the axioms of a vector space. I have done the following:
Are the last 3 ones correct? (Wondering) Then the next axioms that we have to show are multiplicative axioms (with the intersection). Let $k, k_1,k_2\in \mathbb{K}$.
We consider the $\mathbb{F}_2$-vector space $(2^M, +, \cap)$, where $M$ is non-empty set and $+ : 2^M\times 2^M \rightarrow 2^M: (X,Y)\mapsto (X\cup Y)\setminus (X\cap Y)$.
I want to show that $(2^M, +, \cap )$ for $\mathbb{K}=\{\emptyset , M\}$ satisfies the axioms of a vector space. I have done the following:
- Associativity: $(X+Y)+Z=[(X\cup Y)\setminus (X\cap Y)]+Z=([(X\cup Y)\setminus (X\cap Y)]\cup Z)\setminus ([(X\cup Y)\setminus (X\cap Y)]\cap Z)$
Is this correct so far? (Wondering)
$ $
- Existence of neutral element: The empty set.
- Existence of inverse element: The inverse of an element is the set itself.
- Commutativity: We have that $X+Y=(X\cup Y)\setminus (X\cap Y)=(Y\cup X)\setminus (Y\cap X)=Y+X$.
Are the last 3 ones correct? (Wondering) Then the next axioms that we have to show are multiplicative axioms (with the intersection). Let $k, k_1,k_2\in \mathbb{K}$.
- \begin{align*}(X+Y)\cap k&=[(X\cup Y)\setminus (X\cap Y)]\cap k=[(X\cup Y)\cap k]\setminus [(X\cap Y)\cap k]\\ & =[(X\cap k)\cup (Y\cap k)]\setminus [(X\cap k)\cap (Y\cap k)] =X\cap k+Y\cap k\end{align*} here we use that $(A\cap B)\cap C)=(A\cap C)\cap (B\cap C)$, right? (Wondering)
$ $
- $X\cap (k_1+k_1)=X\cap [(k_1\cup k_2)\setminus (k_1\cap k_2)]=[X\cap (k_1\cup k_2)]\setminus [X\cap (k_1\cap k_2)]=[(X\cap k_1)\cup (X\cap k_2)]\setminus [(X\cap k_1)\cap (X\cap k_2)]=X\cap k_1+X\cap k_2$.
Is this correct? (Wondering)
$ $
- $X\cap (k_1\cap k_2)=(X\cap k_1)\cap k_2$. So it is satisfied. (Or do we not get that equality immediately? (Wondering) )
$ $
- $k\cap 1=k$ where $1$ is in this case $2^M$, or not? (Wondering)