- #1
sshaep
- 3
- 0
Clebsch-Gordan Theorem??
symmetric spinor tensors are IRR of SU(2), i.e., [tex]T_{\undergroup{\alpha_1\cdots\alpha_r}}[/tex]
The Clebsch-Gordan theorem says,
[tex]{\{j_1\}}\otimes{\{j_2\}}={\{j_1+j_2\}}\oplus{\{j_1+j_2-1\}}\oplus\cdots\oplus{\{|j_1-j_2|\}}[/tex].
Can I prove this theorem by symmetrizing the tensor product,
[tex]T_{\alpha_1\cdots\alpha_{2j_1}}\otimes T_{\beta_1\cdots\beta_{2j_2}}[/tex]=(express sum of fully symmetric tensors) ??
symmetric spinor tensors are IRR of SU(2), i.e., [tex]T_{\undergroup{\alpha_1\cdots\alpha_r}}[/tex]
The Clebsch-Gordan theorem says,
[tex]{\{j_1\}}\otimes{\{j_2\}}={\{j_1+j_2\}}\oplus{\{j_1+j_2-1\}}\oplus\cdots\oplus{\{|j_1-j_2|\}}[/tex].
Can I prove this theorem by symmetrizing the tensor product,
[tex]T_{\alpha_1\cdots\alpha_{2j_1}}\otimes T_{\beta_1\cdots\beta_{2j_2}}[/tex]=(express sum of fully symmetric tensors) ??
Last edited: