I The constant value on the given exact differential equation

  • I
  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Interest
chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR Summary
Does it matter where the constant is placed or is it placed accordingly for convenience? ...to avoid working with negative values?

Why not work with,

##y^2+(x^2+1)y-3x^3+k=0##

then,



##y^2+(x^2+1)y-3x^3=-k##

then proceed to apply the initial conditions?
My interest is on the highlighted part in red under exact_2 page.
 

Attachments

Physics news on Phys.org
It's more natural to define a level surface of the conserved quantity as F(x,y) = C rather than F(x,y) = -C; the actual sign of C is of no consequence.

(The second alternative also introduces an additional minus sign, and therefore an increased risk of sign errors).
 
  • Like
Likes topsquark and chwala
pasmith said:
It's more natural to define a level surface of the conserved quantity as F(x,y) = C rather than F(x,y) = -C; the actual sign of C is of no consequence.

(The second alternative also introduces an additional minus sign, and therefore an increased risk of sign errors).
Thanks @pasmith . 'For convenience' as I put it...('more natural' as you put it)... or as Mathematicians like indicating 'more generally accepted...all these may apply. Cheers mate.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top