- #1
brotherbobby
- 702
- 163
- Homework Statement
- Prove that : ##\boxed{\dfrac{d}{dt}(\mathbf{A}\cdot \mathbf{B})=\dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}+\mathbf{A}\cdot \dfrac{d\mathbf{B}}{dt}}##
- Relevant Equations
- The dot product of two vectors ##\mathbf{A}## and ##\mathbf{B}## is given by ##\mathbf{A}\cdot \mathbf{B}=AB\cos\theta##, where ##\theta## is the (smaller) angle between them.
Attempt :
We have ##\dfrac{d}{dt}(\mathbf{A}\cdot \mathbf{B})=\dfrac{d}{dt}(AB\cos\theta)=\dfrac{dA}{dt}B\cos\theta+A\dfrac{dB}{dt}\cos\theta+AB\dfrac{d}{dt}\cos\theta##
##=\dfrac{dA}{dt}B\cos\theta+A\dfrac{dB}{dt}\cos\theta-AB\sin\theta \dfrac{d\theta}{dt}##
##=\underbrace{\dfrac{d\mathbf{A}}{dt}\cdot \mathbf{B}}_{\text{Is this correct?}}+\underbrace{\mathbf{A}\cdot \dfrac{d\mathbf{B}}{dt}}_{\text{Is this correct?}}-AB\sin\theta \dfrac{d\theta}{dt}##
Even if I am correct in the first two terms, the third term is a violation of the required statement of the problem.
Request : A hint as to where am going wrong would be very welcome.