- #1
mhill
- 189
- 1
let be the distribution
[tex] D^{m} \delta (x-a) D^{k} \delta (x) [/tex]
my questions are , what happens whenever x=a or x=a ??
is this identity correct
[tex] \delta (x-a) = e^{-a D} \delta (x)= \sum_{n=0}^{\infty}(-a)^{n} \frac{D^{n}}{n!}\delta (x) [/tex]
[tex] D^{m} \delta (x-a) D^{k} \delta (x) [/tex]
my questions are , what happens whenever x=a or x=a ??
is this identity correct
[tex] \delta (x-a) = e^{-a D} \delta (x)= \sum_{n=0}^{\infty}(-a)^{n} \frac{D^{n}}{n!}\delta (x) [/tex]