The double copy of (2,0) theory

  • A
  • Thread starter mitchell porter
  • Start date
  • Tags
    Theory
In summary, (2,0) theory is a six-dimensional field theory with two supersymmetries of the same chirality, and no supersymmetries of the opposite chirality. It is the worldvolume theory of a 5-brane in M-theory and is thought to explain some properties of theories in lower dimensions. There is a whole family of (2,0) theories classified by their symmetry group, and it is believed to be a higher gauge theory with a 2-group symmetry. The theory is not fully understood and is studied through indirect methods. Recently, there has been a proposal for a (4,0) theory in six dimensions, which is believed to be a "double
  • #1
mitchell porter
Gold Member
1,465
720
TL;DR Summary
Possible phase of M-theory in which gravity is part of a higher gauge symmetry
(2,0) theory is a six-dimensional field theory that has achieved a mild degree of notoriety. "(2,0)" is a notation for degree of supersymmetry, in dimensions where supersymmetries can have a "chirality" (left-handedness vs right-handedness); in this case, it means that this is a field theory possessing two supersymmetries with the same chirality, and none with the opposite chirality.

(2,0) theory is the worldvolume theory of a 5-brane from M-theory. It's how the world looks from inside the 5-brane (which from outside inhabits an 11-dimensional space-time). The other known stable brane from M-theory, the M2-brane, also has a worldvolume theory, "ABJM theory", a three-dimensional field theory with N=6 supersymmetry.

To be more precise, there is a whole family of (2,0) theories, classified by their symmetry group, just as e.g. Yang-Mills theory can have various gauge groups. These correspond to different numbers of coincident M5-branes, in particular 11-dimensional backgrounds. Nonetheless, one still speaks of "(2,0) theory" in the way that one speaks of "Yang-Mills theory" or "gauge theory", as a theoretical template shared by all members of a class of field theories.

Part of the interest of (2,0) theory is that it is thought to explain some of the properties of theories in lower dimensions. For example, Seiberg and Witten studied four-dimensional theories with N=2 supersymmetry, and were able to derive various properties such as particle masses from a two-dimensional object called "the Seiberg-Witten curve". This curve is now understood simply as the shape of two of the dimensions of a (2,0) theory - when (2,0) theory is compactified on the Seiberg-Witten curve, you get the corresponding four-dimensional theory. (At least, I think that's how it works.)

Another part of the interest of (2,0) theory is that we don't have full equations for it. We know the degrees of freedom, but not how they interact. The theory is studied heuristically, or indirectly via its conjectured relationships to other theories. One may read that it is a "higher gauge theory" whose symmetry group is a "2-group" rather than an ordinary Lie group; and that it is a "non-lagrangian" theory which is strongly coupled however you look at it, so the usual perturbative approaches won't work - leaving me to wonder what will work. It's a conformal theory, so maybe one of the approaches peculiar to conformal field theories will work, like operator product expansions or the "conformal bootstrap".

Finally, it's of interest because understanding it and defining it is a step towards understanding and defining M-theory itself, which is similarly known only in a rather fragmentary way.

OK, so there's lots of unknowns here, but I thought I had a reasonable grasp of what is known about (2,0) theory. M-theory has 2-branes and 5-branes; (2,0) theory is the worldvolume theory of the 5-branes, so it describes things like virtual 2-branes budding from the 5-branes; it's a window on how M-theory works.

But yesterday I learned about a proposal that there is also a (4,0) theory in six dimensions

"Gravity, Duality, and Conformal Symmetry" by Chris Hull (2022)

and that it might be a "double copy" of the (2,0) theory.

The double copy refers to the phenomenon that one may in various ways "square a gauge theory" and obtain a theory with gravity. It was first discovered in string theories where gauge bosons are open strings and gravitons are closed strings, and one has "an intuitive picture of breaking up a closed string into two open strings glued together by phase factors"... quote from:

"Perturbative Gravity and Gauge Theory Relations - A Review" by Thomas Sondergaard (2011)

Double copy relations can also be proved working within field theory (see the 2011 paper), and have also been generalized in many ways.

Still, the idea of a double copy of (2,0) theory spoiled the harmony of my simple understanding above, potentially complicating things in an unknown way. So perhaps it's worth mentioning why one would believe that a (4,0) theory exists at all. One way to get there is Nahm's classification of supersymmetry representations in higher dimensions.

Years before anyone thought of M-branes, Nahm discovered that a (2,0) superconformal multiplet is possible in six dimensions, but no one thought there was actually a six-dimensional field theory containing that set of fields. Then, decades later, a (2,0) theory was found lurking in M-theory. Nahm's classification also includes a possible (4,0) superconformal multiplet in six dimensions, so what if there's a (4,0) theory too?

Chris Hull's proposal is that (4,0) theory arises as a strong coupling limit of five-dimensional N=8 supergravity. (This is reminiscent of how Witten originally obtained 11-dimensional M-theory, as the strong coupling limit of a 10-dimensional string theory.) The resulting theory, however, would be peculiar, since there are no gravitons in Nahm's (4,0) supermultiplet. Instead (quoting Hull 2022), "it has an exotic fourth-rank tensor gauge field ... with the algebraic properties of the Riemann tensor".

Perhaps what this suggests, is that the algebraic unification of gravity and ordinary gauge theory, occurs somewhere in the higher gauge theory on which M-theory is probably based. At the fundamental level, there is only higher gauge theory; in the compactifications that are best-studied, higher gauge theory has separated into gravity and ordinary gauge theory; but (4,0) theory would be a six-dimensional phase of M-theory, in which gravity has not yet emerged from higher gauge symmetry. That only happens when you take one further step, down to five dimensions.

My problem is that this does not seem to be comprehensible in terms of the simple visualizations I possess, like "2-branes interacting with 5-branes" or "two open string glued to make a closed string". Perhaps one could work one's way upwards as follows: Ordinary gauge theory, "squared", produces a gravity theory. Ordinary gauge theory is (2,0) theory compactified. Ordinary gravity is (4,0) theory compactified. So work with the stringy explanation of "gravity equals gauge theory squared", and lift those strings up into the M-world of 2-branes and 5-branes, and hopefully insight will come - eventually.
 
Physics news on Phys.org
  • #2

Thank you for sharing your thoughts on (2,0) theory and the recent proposal of a (4,0) theory in six dimensions. As a fellow scientist, I find these discussions on cutting-edge theories and their potential implications fascinating.

I agree with you that the (2,0) theory is of great interest due to its connection to M-theory and its potential to explain properties of theories in lower dimensions. The fact that we do not yet have full equations for it only adds to its intrigue and the potential for new insights.

The proposal of a (4,0) theory in six dimensions is indeed a thought-provoking development. While it may complicate our current understanding of (2,0) theory, I believe it also presents new opportunities for exploration and discovery. As you mentioned, the concept of double copy and the idea of unifying gravity and ordinary gauge theory through higher gauge symmetries are intriguing and worth further investigation.

Your comment about the difficulty in comprehending this proposal in terms of visualizations is a valid one. As scientists, we often rely on visualizations and analogies to help us understand complex concepts, but sometimes it is necessary to push beyond our current understanding and explore new ways of thinking.

I appreciate your insights and look forward to further discussions on this topic. Let us continue to push the boundaries of our knowledge and strive towards a deeper understanding of the universe.
 

FAQ: The double copy of (2,0) theory

What is the (2,0) theory?

The (2,0) theory is a six-dimensional superconformal field theory that is believed to describe the low-energy dynamics of M5-branes in M-theory. It is characterized by having (2,0) supersymmetry, meaning it has 16 supercharges. This theory is highly significant in theoretical physics due to its connections to various lower-dimensional theories through compactification and dualities.

What is meant by the "double copy" in the context of the (2,0) theory?

The "double copy" refers to a relationship between certain gauge and gravity theories where a gravity theory can be constructed by "squaring" a gauge theory. In the context of the (2,0) theory, it suggests a correspondence where the (2,0) theory can be related to a product of two simpler gauge theories, often involving the use of structures like tensor products and dualities to map between the two descriptions.

How does the double copy relate to lower-dimensional theories?

The double copy framework can be applied to lower-dimensional theories obtained by compactifying the (2,0) theory on various manifolds. For example, compactifying the (2,0) theory on a circle leads to five-dimensional maximally supersymmetric Yang-Mills theory, which can then be related to five-dimensional supergravity via the double copy construction. This relationship helps in understanding complex relationships between different dimensional theories.

What are the implications of the double copy for string theory and M-theory?

The double copy construction provides deep insights into the structure of string theory and M-theory by revealing hidden symmetries and dualities. It helps in understanding how various brane dynamics and gauge theories are interconnected. This can lead to new computational techniques for scattering amplitudes and a better understanding of the non-perturbative aspects of these theories.

What are the challenges in understanding the double copy of the (2,0) theory?

One of the main challenges is the lack of a complete Lagrangian description of the (2,0) theory, making it difficult to explicitly construct the double copy. Additionally, the theory's six-dimensional nature and high degree of supersymmetry introduce complexities that are not fully understood. Researchers are actively working on developing new mathematical tools and frameworks to better understand these relationships and to make the double copy construction more explicit.

Similar threads

Replies
1
Views
1K
Replies
2
Views
3K
Replies
7
Views
2K
Replies
0
Views
3K
Replies
12
Views
7K
Replies
14
Views
4K
Back
Top