- #1
Ichimaru
- 9
- 0
Question Statement
Polyacetylene can be modeled naively as a one dimensional chain of carbon atoms each separated by a lattice constant 'a'. Taking the electrons in such a system to be nearly free and applying a weak periodic perturbation we can derive a dispersion relation giving a curve such as the one shown on page 6 here: http://web.mit.edu/course/6/6.732/www/new_part1.pdf
Now with more detail: Polyacetylene actual has an alternating structure of double bond (length 0.9a) then single bond (length 1.1a). This gives it a lattice constant of 2a and a basis of (0) and (0.9a). How does this affect the shape and values of the dispersion curve? What are the differing electrical properties of the naive and more detailed models?
Attempt at solution
This seems like it would be similar to the introduction of a diatomic unit cell for phonons in a crystal lattice. When considering phonons the introduction of a second atom in the unit cell gives an extra branch in the dispersion relation. However I don't understand how this applies in the case of electron bands. We would have two bands anyway as a result of the periodic potential (in the tight binding model there will be two complete bands, in our weak binding model there are only two at the Brillouin sone boundaries). So what would the effect be?
Thanks very much for any help!
Polyacetylene can be modeled naively as a one dimensional chain of carbon atoms each separated by a lattice constant 'a'. Taking the electrons in such a system to be nearly free and applying a weak periodic perturbation we can derive a dispersion relation giving a curve such as the one shown on page 6 here: http://web.mit.edu/course/6/6.732/www/new_part1.pdf
Now with more detail: Polyacetylene actual has an alternating structure of double bond (length 0.9a) then single bond (length 1.1a). This gives it a lattice constant of 2a and a basis of (0) and (0.9a). How does this affect the shape and values of the dispersion curve? What are the differing electrical properties of the naive and more detailed models?
Attempt at solution
This seems like it would be similar to the introduction of a diatomic unit cell for phonons in a crystal lattice. When considering phonons the introduction of a second atom in the unit cell gives an extra branch in the dispersion relation. However I don't understand how this applies in the case of electron bands. We would have two bands anyway as a result of the periodic potential (in the tight binding model there will be two complete bands, in our weak binding model there are only two at the Brillouin sone boundaries). So what would the effect be?
Thanks very much for any help!