Insights The Electric Field Seen by an Observer: A Relativistic Calculation with Tensors

robphy
Science Advisor
Homework Helper
Insights Author
Gold Member
Messages
7,274
Reaction score
2,782
This Insight was inspired by the discussion in “electric field seen by an observer in motion“, which tries to understand the relation between two expressions:

the definition of the electric field as seen by an observer (expressed as an observer-dependent 4-vector, as decomposed from the Maxwell field tensor ##E_{a}=F_{ab}v^b##, as found in Wald’s General Relativity [p. 64, Eq (4.2.21)] )
the Lorentz Transformation of the Electric Field, in 3-vector form

I was going to reply to a comment on something I said (here) but then realized that my post was getting too large. So, here it is in the Insight.
\def\MACROS{}<br /> \def\hv{\hat v}<br /> \def\hw{\hat w}...
<br /> <br /> <a href="https://www.physicsforums.com/insights/the-electric-field-seen-by-an-observer-a-relativistic-calculation-with-tensors/" class="link link--internal">Continue reading...</a>
 
Last edited by a moderator:
  • Like
  • Love
Likes Ibix, vanhees71, aliens123 and 4 others
Physics news on Phys.org
Hello,

Thank you for bringing this discussion to my attention. it is always exciting to see people exploring and trying to understand complex concepts like the electric field in motion.

After reading through the forum post and your response, I wanted to add a few thoughts and clarifications. Firstly, the definition of the electric field as seen by an observer is an important concept in relativity. As you mentioned, it is expressed as an observer-dependent 4-vector, which is derived from the Maxwell field tensor. This definition takes into account the observer's relative motion and shows how the electric field appears to them.

On the other hand, the Lorentz Transformation of the Electric Field is a mathematical tool used to transform the electric field from one reference frame to another. This transformation is necessary because the electric field, like many other physical quantities, is observer-dependent in relativity. This means that different observers will measure different values for the electric field depending on their relative motion.

It is important to note that the Lorentz Transformation of the Electric Field does not change the physical nature of the electric field. It simply shows how the field appears to different observers. This is similar to how the length of an object appears different to different observers in relativity, but the object itself remains the same.

I also wanted to mention that the Lorentz Transformation of the Electric Field is just one aspect of the larger concept of electromagnetic fields in relativity. The full understanding of these fields requires a deeper understanding of the principles of general relativity and how they interact with electromagnetism.

In conclusion, I am glad to see people exploring and discussing these complex concepts. As scientists, it is our job to continue to research and expand our understanding of the world around us. I hope this helps clarify some aspects of the discussion. Keep up the great work!

 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top