MHB The endomorphism ring is a field

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field Ring
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit and $M$ be a $R$-module.

I want to show that the endomorphism ring $\text{End}_R(M)=\text{Hom}_R(M,M)$ of a simple $R$-module is a field. We have that $\text{End}_R(M)=\text{Hom}_R(M,M)=\{f:M\rightarrow M \mid f \ : \ R-\text{ homomorphism}\}$.

We have that since $M$ s simple, it is cyclic and isomorphic to $R/J$, where $J$ is a maximal ideal of $R$.

So, to show that the endomorphism ring is a field do we have to show that the mapping $R\rightarrow \text{End}_R(R/J)$ is an homomorphism with kernel $J$ ? (Wondering)
 
Physics news on Phys.org
Hi mathmari,

In http://mathhelpboards.com/linear-abstract-algebra-14/show-966-isomorphism-18576.html, you proved that if $R$ is a commutative ring with unity, then every nonzero homomorphism of simple $R$-modules is an isomorphism. Using that theorem, you can claim that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$, and therefore invertible. Consequently, $\operatorname{End}_R(M)$ is a field.
 
Euge said:
In http://mathhelpboards.com/linear-abstract-algebra-14/show-966-isomorphism-18576.html, you proved that if $R$ is a commutative ring with unity, then every nonzero homomorphism of simple $R$-modules is an isomorphism. Using that theorem, you can claim that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$, and therefore invertible. Consequently, $\operatorname{End}_R(M)$ is a field.

How do we know that there are non-zero homomorphisms? (Wondering)

Also, how do we know that there are invertible elements, when we know that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$ ? (Wondering)
 
mathmari said:
How do we know that there are non-zero homomorphisms? (Wondering)
There may not be, in which case $\operatorname{End}_R(M)$ is the zero ring, which is a field.

mathmari said:
Also, how do we know that there are invertible elements, when we know that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$ ? (Wondering)

Automorphisms of $M$ are bijections, and bijections have inverses.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top