- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $n=p^rm$, where $p$ is a prime, $m \in \mathbb{N}, r \geq 0$ an integer and $(p,m)=1$.
I have to show that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$.
I have done the following:
In $\mathbb{Z}_p$ it stands that $x^p=x$.
So, we have that
$$x^{p^r}=(x^{p})^{p^r-1}=x^{p^r-1}=(x^p)^{p^r-2}=x^{p^r-2}= \dots =x^p=x$$
That means that $x^n=1 \Rightarrow x^{p^rm}=1 \Rightarrow (x^{p^r})^m=1 \Rightarrow x^m=1$
Is this correct?? Do we conclude from that, that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$ ?? (Wondering)
Let $n=p^rm$, where $p$ is a prime, $m \in \mathbb{N}, r \geq 0$ an integer and $(p,m)=1$.
I have to show that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$.
I have done the following:
In $\mathbb{Z}_p$ it stands that $x^p=x$.
So, we have that
$$x^{p^r}=(x^{p})^{p^r-1}=x^{p^r-1}=(x^p)^{p^r-2}=x^{p^r-2}= \dots =x^p=x$$
That means that $x^n=1 \Rightarrow x^{p^rm}=1 \Rightarrow (x^{p^r})^m=1 \Rightarrow x^m=1$
Is this correct?? Do we conclude from that, that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$ ?? (Wondering)