- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $E/F$ be a finite extension.
I want to show that this extension is Galois if and only if $E$ is a splitting field of a separable polynomial of $F[x]$. I have done the folllowing:
$\Rightarrow$ :
We suppose that $E/F$ is Galois. So, we have that the extension is normal and separable.
Since the extension is normal we have that $E$ is a splitting field of a polynomial $f\in F[x]$.
Let $p(x)$ be an irreducible factor of $f(x)$.
Let $a$ be a root of $p(x)$ then $a$ is also a root of $f(x)$, so $a\in E$.
We have that $p(x)=\lambda \text{Irr}(a,F), \lambda\in F$.
Since the extension $E/F$ is separable we have that for each element $e\in E$ the $\text{Irr}(e,F)$ is separable, so it has only simple roots.
So, $\text{Irr}(a,F)$ has only simple roots, so also $p(x)$, so $p(x)$ is separable.
We have that a polynomial is separable if each irreducible factor is separable. So, $f(x)$ is separable.
So, $E$ is a splitting field of a separable polynomial $f(x)$.
Is this direction correct? (Wondering) $\Leftarrow$ :
We suppose that $E$ is a splitting field of a separable polynomial of $F[x]$, say $f(x)$.
From that we conclude that the extension $E/F$ is normal. So, each irreducible polynomial of $F[x]$ that has a root in $E$, has all the roots in $E$.
Let $a\in E$ be a root of $f(x)$.
$\text{Irr}(a,F)$ is an irreducible factor of $f(x)$. Since $f(x)$ is separable, we have that $\text{Irr}(a,F)$ is also separable.
To show that the extension $E/F$ is separable we have to show that for each $e\in E$ the $\text{Irr}(e,F)$ is separable, right?
From what I have shown so far, we have that this holds only for those elements of $E$ that are a root of $f(x)$, or not? (Wondering)
Let $E/F$ be a finite extension.
I want to show that this extension is Galois if and only if $E$ is a splitting field of a separable polynomial of $F[x]$. I have done the folllowing:
$\Rightarrow$ :
We suppose that $E/F$ is Galois. So, we have that the extension is normal and separable.
Since the extension is normal we have that $E$ is a splitting field of a polynomial $f\in F[x]$.
Let $p(x)$ be an irreducible factor of $f(x)$.
Let $a$ be a root of $p(x)$ then $a$ is also a root of $f(x)$, so $a\in E$.
We have that $p(x)=\lambda \text{Irr}(a,F), \lambda\in F$.
Since the extension $E/F$ is separable we have that for each element $e\in E$ the $\text{Irr}(e,F)$ is separable, so it has only simple roots.
So, $\text{Irr}(a,F)$ has only simple roots, so also $p(x)$, so $p(x)$ is separable.
We have that a polynomial is separable if each irreducible factor is separable. So, $f(x)$ is separable.
So, $E$ is a splitting field of a separable polynomial $f(x)$.
Is this direction correct? (Wondering) $\Leftarrow$ :
We suppose that $E$ is a splitting field of a separable polynomial of $F[x]$, say $f(x)$.
From that we conclude that the extension $E/F$ is normal. So, each irreducible polynomial of $F[x]$ that has a root in $E$, has all the roots in $E$.
Let $a\in E$ be a root of $f(x)$.
$\text{Irr}(a,F)$ is an irreducible factor of $f(x)$. Since $f(x)$ is separable, we have that $\text{Irr}(a,F)$ is also separable.
To show that the extension $E/F$ is separable we have to show that for each $e\in E$ the $\text{Irr}(e,F)$ is separable, right?
From what I have shown so far, we have that this holds only for those elements of $E$ that are a root of $f(x)$, or not? (Wondering)
Last edited by a moderator: