- #1
Poopsilon
- 294
- 1
Homework Statement
Let f be a suitably regular function on ℝ. (whatever that means).
What function do we obtain when we take the Fourier transform of the Fourier transform of f?
Homework Equations
[tex]F(s) = \int_{x=-\infty}^{\infty}f(x)e^{-2\pi isx}dx[/tex]
The Attempt at a Solution
[tex]\int_{x=-\infty}^{\infty}F(s)e^{-2\pi isx}dx = F(s)\int_{x=-\infty}^{\infty}e^{-2\pi isx}dx = F(s)[\frac{-e^{-2\pi isx}}{2\pi is}]_{x=-\infty}^{\infty} = \frac{F(s)i}{2\pi s}[e^{-2\pi isx}]_{x=-\infty}^{\infty}[/tex]
But this simply oscillates indefinitely around a complex circle as x goes to negative infinity and infinity, where have I gone wrong?
Last edited: