- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $ u \in L^1_{\text{loc}}(\Omega) $ and the weak derivatives of first class satisfy $ D_{x_i} u(x)=0 , i=1, \dots, n $ almost everywhere in $ \Omega $.
I want to show that $ u=0 $ almost everywhere.
I have thought the following:
$ 0= \int_{B(x, \epsilon)} D_{x_i}u(x) \psi_{\epsilon}(x-y) dy \overset{\epsilon \to 0}{\to} D_{x_i} u(x) $
where $ x $ is a Lebesgue point and $ \psi_{\epsilon}(x)=\epsilon^{-n }\psi{\left( \frac{x}{\epsilon}\right)}, \epsilon>0 $
where $ \psi \in C_C^{\infty}(\mathbb{R}^n), \psi>0, \int \psi(x) dx=1 $.
Is it right so far? Can we use this in order to show that $u=0$ almost everywhere?Does it hold that $ \int_{B(x, \epsilon)} D_{x_i}u(x) \psi_{\epsilon}(x-y) dy=- \int_{B(x, \epsilon)} u(x) \psi_{\epsilon}'(x-y) dy $ ?
Let $ u \in L^1_{\text{loc}}(\Omega) $ and the weak derivatives of first class satisfy $ D_{x_i} u(x)=0 , i=1, \dots, n $ almost everywhere in $ \Omega $.
I want to show that $ u=0 $ almost everywhere.
I have thought the following:
$ 0= \int_{B(x, \epsilon)} D_{x_i}u(x) \psi_{\epsilon}(x-y) dy \overset{\epsilon \to 0}{\to} D_{x_i} u(x) $
where $ x $ is a Lebesgue point and $ \psi_{\epsilon}(x)=\epsilon^{-n }\psi{\left( \frac{x}{\epsilon}\right)}, \epsilon>0 $
where $ \psi \in C_C^{\infty}(\mathbb{R}^n), \psi>0, \int \psi(x) dx=1 $.
Is it right so far? Can we use this in order to show that $u=0$ almost everywhere?Does it hold that $ \int_{B(x, \epsilon)} D_{x_i}u(x) \psi_{\epsilon}(x-y) dy=- \int_{B(x, \epsilon)} u(x) \psi_{\epsilon}'(x-y) dy $ ?