- #1
soroban
- 194
- 0
Consider the parametric equations: [tex]\:\begin{Bmatrix}x &=& \dfrac{t^2-1}{t^2+1} \\ y &=& \dfrac{2t}{t^2+1} \end{Bmatrix}[/tex]
Then: [tex]\;x^2 + y^2 \:=\:\left(\frac{t^2-1}{t^2+1}\right)^2 + \left(\frac{2t}{t^2+1}\right)^2 \;=\;\frac{(t^2-1)^2 + (2t)^2}{(t^2+1)^2}[/tex]
. . . . [tex]=\;\frac{t^4-2t^2+1 +4t^2}{(t^2+1)^2} \;=\;\frac{t^4+2t^2+1}{(t^2+1)^2} \;=\;\frac{(t^2+1)^2}{(t^2+1)^2} \;=\;1 [/tex]
We have: [tex]\;x^2+y^2\,=\,1[/tex], a unit circle centered at the origin.Find the [tex]y[/tex]-intercepts.
Set [tex]x=0\!:\;\frac{t^2-1}{t^2+1} \,=\,0 \quad\Rightarrow\quad t\,=\,\pm1[/tex]
. . Hence: [tex]\;y \:=\:\frac{2(\pm1)}{(\pm1)^2+1} \:=\:\pm1[/tex]
The [tex]y[/tex]-intercepts are: [tex]\;(0,1),\;(0,-1)[/tex]Find the [tex]x[/tex]-intercepts.
Set [tex]y = 0\!:\;\frac{2t}{t^2+1}\,=\,0 \quad\Rightarrow\quad t \,=\,0[/tex]
. . Hence: [tex]\;x \:=\:\frac{0^2-1}{0^2+1} \:=\:-1[/tex]
The [tex]x[/tex]-intercept is: [tex]\;(-1,0)[/tex]What happened to the other [tex]x[/tex]-intercept?