- #1
Hamiltonian
- 296
- 193
- Homework Statement
- A conducting sphere of radius r1 is surrounded by a dielectric layer of outer radius r2 and dielectric constant e_r if the conducting sphere is given a charge q, determine the surface charge density of polarization charges on the outer surface of the dielectric layer.
- Relevant Equations
- $$\vec E_{net} = \frac{\vec E_{applied}}{\varepsilon_r}$$
The net Electric field(inside the dielectric):
$$E_{net} = \frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2}$$
$$\vec E_{net} = \vec E_{applied} - \vec p$$
where p is the polarization vector.
let charge ##q_{-}## be present on the inner surface of dielectric and ##q_{+}## on the outer surface of the dielectric.
$$\vec p = \frac{q_{-}}{4\pi \varepsilon_0 \varepsilon_r r^2}$$
$$\frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2} = \frac{1}{4\pi \varepsilon_0}\frac{q}{r^2} - \frac{q_{-}}{4\pi \varepsilon_0 \varepsilon_r r^2}$$
after simplifying you get:
$$q_{-} = q(\varepsilon_r - 1)$$
$$|q_{-}| = |q_{+}|$$
therefore the final answer(surface charge density on the the outer surface of the dielectric):
$$\sigma_{+} = \frac{q_{+}}{4\pi{ r_2}^2} = \frac{(\varepsilon_r - 1)q}{4\pi {r_2}^2}$$
I have obtained option (c) but the correct answer is (d), I am unable to see why there should be ##\varepsilon_r## in the denominator of my final answer, is there a mistake in the answer given?
or have I severely messed up some where?