- #1
roam
- 1,271
- 12
According to my textbook the nonlinear Schrödinger equation:
$$\frac{\partial A(z,T)}{\partial z} = -i \frac{\beta_2}{2} \frac{\partial^2A}{\partial T^2} + i \gamma |A|^2 A \ \ (1)$$
can be cast in the form
$$\frac{\partial U(z,\tau)}{\partial z} = -i \frac{sign \beta_2}{2} \frac{1}{L_D} \frac{\partial^2 U}{\partial \tau^2} + i \frac{1}{L_{NL}} |U|^2 U \ \ (2)$$
by normalizing with: ##\tau = \frac{T}{T_0},## and ##A(z,T) = \sqrt{P_0} U(z, \tau).##
But my textbook does not show the steps involved, and I can't arrive at equation (2) when I try to do this myself.
So substituting the two parameters into (1) we get
$$\frac{\partial (\sqrt{P_0} U(z, \tau))}{\partial z} = -i \frac{\beta_2}{2} \frac{\partial^2(\sqrt{P_0} U(z, \tau))}{\partial (\tau T_0)^2} + i \gamma |(\sqrt{P_0} U(z, \tau))|^2 (\sqrt{P_0} U(z, \tau))$$
We know that the dispersion length is given by ##L_D = \frac{T_0^2}{|\beta_2|}## and the the nonlinear length is ##L_{NL} = \frac{1}{\gamma P_0}.## When substituting these two the expression becomes
$$\frac{\partial (\sqrt{P_0} U(z, \tau))}{\partial z} = -i \frac{1}{2} \frac{1}{L_D} \frac{\partial^2(\sqrt{P_0} U(z, \tau))}{\partial \tau^2} + i \frac{1}{L_{NL}} \sqrt{P_0} P_0 U^2 U.$$
So, what can we do about the extra ##\sqrt{P_0}##'s and the extra ##P_0## (peak power)? What is wrong here?
Any explanation is greatly appreciated.
$$\frac{\partial A(z,T)}{\partial z} = -i \frac{\beta_2}{2} \frac{\partial^2A}{\partial T^2} + i \gamma |A|^2 A \ \ (1)$$
can be cast in the form
$$\frac{\partial U(z,\tau)}{\partial z} = -i \frac{sign \beta_2}{2} \frac{1}{L_D} \frac{\partial^2 U}{\partial \tau^2} + i \frac{1}{L_{NL}} |U|^2 U \ \ (2)$$
by normalizing with: ##\tau = \frac{T}{T_0},## and ##A(z,T) = \sqrt{P_0} U(z, \tau).##
But my textbook does not show the steps involved, and I can't arrive at equation (2) when I try to do this myself.
So substituting the two parameters into (1) we get
$$\frac{\partial (\sqrt{P_0} U(z, \tau))}{\partial z} = -i \frac{\beta_2}{2} \frac{\partial^2(\sqrt{P_0} U(z, \tau))}{\partial (\tau T_0)^2} + i \gamma |(\sqrt{P_0} U(z, \tau))|^2 (\sqrt{P_0} U(z, \tau))$$
We know that the dispersion length is given by ##L_D = \frac{T_0^2}{|\beta_2|}## and the the nonlinear length is ##L_{NL} = \frac{1}{\gamma P_0}.## When substituting these two the expression becomes
$$\frac{\partial (\sqrt{P_0} U(z, \tau))}{\partial z} = -i \frac{1}{2} \frac{1}{L_D} \frac{\partial^2(\sqrt{P_0} U(z, \tau))}{\partial \tau^2} + i \frac{1}{L_{NL}} \sqrt{P_0} P_0 U^2 U.$$
So, what can we do about the extra ##\sqrt{P_0}##'s and the extra ##P_0## (peak power)? What is wrong here?
Any explanation is greatly appreciated.