- #1
curious_mind
- 41
- 9
- Homework Statement
- Initially the half-life is measured 2.25 days, but later it was found underestimated by 10%. It is required to find the percentage error in "Population" of the substance after 9 days.
- Relevant Equations
- ## N = N_0 e^{-\lambda t} ##
Please check the question below as given originally. Answer given is 25%. I am unable to proceed.
It is given that the half-life is underestimated by 10% therefore it must be larger than originally estimated.
What I can find using the percentage error formula is ##\left( \dfrac{Actual-Estimated}{Actual} \right) \times 100% = \left( \dfrac{Actual-2.25}{Actual} \right) \times 100%=10%##
So, ##Actual = 2.5 ~days##
Now, I am unable to make relation of this with the population after 9 days, which is required to find in the question. The answer given is ##25%##. How it is obtained?
Thanks.
It is given that the half-life is underestimated by 10% therefore it must be larger than originally estimated.
What I can find using the percentage error formula is ##\left( \dfrac{Actual-Estimated}{Actual} \right) \times 100% = \left( \dfrac{Actual-2.25}{Actual} \right) \times 100%=10%##
So, ##Actual = 2.5 ~days##
Now, I am unable to make relation of this with the population after 9 days, which is required to find in the question. The answer given is ##25%##. How it is obtained?
Thanks.