- #1
Aleolomorfo
- 73
- 4
Hello everybody!
I was studying the Glashow-Weinberg-Salam theory and I have found this relation:
$$e^{\frac{i\beta}{2}}\,e^{\frac{i\alpha_3}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix} = e^{\frac{i\beta}{2}}\,e^{-\frac{i\alpha_3}{2}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix}$$
I do not know how the exponential matrix acts on the vector.
Thanks in advance!
I was studying the Glashow-Weinberg-Salam theory and I have found this relation:
$$e^{\frac{i\beta}{2}}\,e^{\frac{i\alpha_3}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix} = e^{\frac{i\beta}{2}}\,e^{-\frac{i\alpha_3}{2}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix}$$
I do not know how the exponential matrix acts on the vector.
Thanks in advance!