- #1
mathsisu97
- 6
- 0
- Homework Statement
- What is the explicit expression of the propagator for a particle in a magnetic field along with z-axis
- Relevant Equations
- ## H = \omega J_z ##
##J^2 |jm> = \hbar^2 j(j+1) |jm>##
##J_z |jm> = \hbar m |jm > ##
To show that when ##[J^2, H]=0 ## the propagator vanishes unless ##j_1 = j_2## , I did (##\hbar =1##)
$$ K(j_1, m_1, j_2 m_2; t) = [jm, e^{-iHt}]= e^{iHt} (e^{iHt} jm e^{-iHt}) - e^{-iHt} jm $$
$$ = e^{iHt}[jm_H - jm] $$
So we have
$$ \langle j_1 m_1 | [jm, e^{-iHt} ] | j_2 m_2 \rangle $$
$$ = (j_1 m_1 - j_2 m_2) \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle $$
$$ = \langle j_1 m_1 | e^{-iHt} [ jm_H -jm] | j_2 m_2 \rangle $$
$$ \frac{d jm_H}{dt} = \frac{i}{\hbar} [ H, jm_H] $$
Thus
$$ jm_H = jm $$
And
$$ (j_1 m_1 - j_2 m_2) \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle = \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle $$
$$ (j_1 m_1 - j_2 m_2) K(j_1 m_1, j_2 m_2; t) =0 $$
So the propagator vanishes unless ##j_1 = j_2##
b) Splitting the time evolution
$$ \langle j m_1 | e^{-iHt} | j m_2 \rangle = \langle | e^{-iH(t-t_1)} e^{-iHt_1} | j m_2 \rangle $$
In the continuous (usual) case we have
$$ K(x,t,x', 0) = \int dx'' K(x,t, x'', t_1) K(x'', t_1, x', 0) $$
In the discrete case this is simply just a sum
$$ K(x,t,x', 0) = \sum K(x,t, x'', t_1) K(x'', t_1, x', 0) $$
$$ = K (t-t_1) K(t_1) $$
I am stuck on part c (see attached file) where I need to show that when
$$ H= \omega J_z $$
for a particle in a magnetic field, what is the propagator?
$$ K(j_1, m_1, j_2 m_2; t) = [jm, e^{-iHt}]= e^{iHt} (e^{iHt} jm e^{-iHt}) - e^{-iHt} jm $$
$$ = e^{iHt}[jm_H - jm] $$
So we have
$$ \langle j_1 m_1 | [jm, e^{-iHt} ] | j_2 m_2 \rangle $$
$$ = (j_1 m_1 - j_2 m_2) \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle $$
$$ = \langle j_1 m_1 | e^{-iHt} [ jm_H -jm] | j_2 m_2 \rangle $$
$$ \frac{d jm_H}{dt} = \frac{i}{\hbar} [ H, jm_H] $$
Thus
$$ jm_H = jm $$
And
$$ (j_1 m_1 - j_2 m_2) \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle = \langle j_1 m_1 | e^{-iHt} | j_2 m_2 \rangle $$
$$ (j_1 m_1 - j_2 m_2) K(j_1 m_1, j_2 m_2; t) =0 $$
So the propagator vanishes unless ##j_1 = j_2##
b) Splitting the time evolution
$$ \langle j m_1 | e^{-iHt} | j m_2 \rangle = \langle | e^{-iH(t-t_1)} e^{-iHt_1} | j m_2 \rangle $$
In the continuous (usual) case we have
$$ K(x,t,x', 0) = \int dx'' K(x,t, x'', t_1) K(x'', t_1, x', 0) $$
In the discrete case this is simply just a sum
$$ K(x,t,x', 0) = \sum K(x,t, x'', t_1) K(x'', t_1, x', 0) $$
$$ = K (t-t_1) K(t_1) $$
I am stuck on part c (see attached file) where I need to show that when
$$ H= \omega J_z $$
for a particle in a magnetic field, what is the propagator?
Attachments
Last edited: