MHB The Reflection Property of a Hyperbola

AI Thread Summary
The discussion focuses on seeking a proof of the reflective property of a hyperbola, defined as the locus of points where the difference in distances to two foci is constant. A specific proof is requested that employs geometric definitions and avoids heavy algebra. The reflective property states that a ray from one focus reflects off the hyperbola as if it originated from the other focus. The conversation also touches on the beauty of classical geometry and references a book titled "Geometry of Conics" by Akopyan. The proof approach involves a contradiction method to show that the tangent line at a point bisects the angle formed by the foci.
Evgeny.Makarov
Gold Member
MHB
Messages
2,434
Reaction score
4
Hello,

Does anyone have a reference to a proof of the reflective property of a hyperbola? I need a proof that uses the geometric definition of a hyperbola as the locus of points $X$ such that $|XF_1-XF_2|=2a$ for some fixed points $F_1$ and $F_2$ and a positive constant $a$. The proof may also use elementary geometry but, preferably, no heavy algebra. The reflective property of a hyperbola says that a ray issued from one of the foci and reflected from the hyperbola is seen as issued from the other focus. I have a corresponding proof for an ellipse, but I looked through two of my textbooks and the first page of Google results and did not find a suitable proof for a hyperbola.

Thank you.
 
Mathematics news on Phys.org
Classical geometry of conic section is a dead subject sadly. When I taught the conic sections before I researched classical geometric proofs of the reflection properties of all three conics and how the locus definition follows from planar intersections of a double-cone. None of which uses coordinates of algebra (which is what makes it classical geometry). It is a very beautiful subject nobody knows anything about, it died back in Greece. The book I used was "Geometry of Conics" by Akopyan to research a little bit of what I was interested in.
----------------------

We want to prove that $\angle F_1 P F_2$ is bisected by the hyperbola. Bisected by the hyperbola means that the tangent line bisects the angle (tangent line not drawn in picture). So we do it by contradiction. We assume that the hyperbola does not bisect the angle i.e. the tangent line does not bisect it. Therefore, the bisection of $\angle F_1 P F_2$ is a secant line to the hyperbola. It will intersect the hyperbola at some other point $Q$, we assume that $Q$ is on the same branch of the hyperbola. We will then need to redo the proof assuming $Q$ is on the other branch of the hyperbola, which we will not do as it will be very similar.

So here is the set up, $\angle F_1 P F_2$, the green angle is bisected by the brown line at another point $Q$ as we are assuming, for the sake of contradiction, the tangent line at $P$ does not bisect angle. Clearly, $F_1$ and $F_2$ are foci of hyperbola.

1) Construct $F$ on segment $F_1P$ so that $PF = PF_2$.
2) By SAS it follows $FQ = F_2Q$.
3) By hyperbola property, $F_1P - PF_2 = F_1Q - F_2Q$.
4) Write $PF_1 = PF + FF_1$.
5) By (2) in (3) we have $F_1P - PF_2 = F_1Q - FQ$
6) Substitute (1) and (4) into (5), $PF + FF_1 - PF = F_1Q - FQ \implies FF_1 = F_1Q-FQ$
7) By $\triangle FF_1Q$ by triangle inequality satisfies $FF_1 > F_1Q - FQ$. Contradiction!
 

Attachments

  • geometry.jpg
    geometry.jpg
    19.7 KB · Views: 133
Thanks a lot.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top