- #1
Haorong Wu
- 418
- 90
- Homework Statement
- Prove that in the presentation of ##\beta##,
##\mathbf \alpha=\begin{pmatrix}\mathbf 0 & \mathbf \sigma \\ \mathbf \sigma & \mathbf 0\end{pmatrix} ## and ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,##
where ##\mathbf \alpha## and ##\beta## are in the Dirac equation, in which ##H=c \mathbf \alpha \cdot \mathbf p +\beta m c^2##.
- Relevant Equations
- 1. ##\mathbf \alpha## and ##\beta## are Hermitian.
2. ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0##, if ##i\ne j##.
3. ##\{ \mathbf \alpha_i, \beta\}=0##.
4. ##\alpha_i^2=\beta^2=1##.
5. The traces of ##\mathbf \alpha## and ##\beta## are zero.
6. The eigenvalues of them are ##1## or ##-1##.
In the 4-dimensional representation of ##\beta##, ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,## and we can suppose ## \alpha_i=\begin{pmatrix}\mathbf A_i & \mathbf B_i \\ \mathbf C_i & \mathbf D_i\end{pmatrix} ##.
From the anti-commutation relation ##\{ \mathbf \alpha_i, \beta\}=0##, I can derive ##A_i=D_i=0##.
From ##\alpha_i^2=1##, I can have ##C_i=B_i^{-1}##. Furthermore, from the Hermiticity, I can have ##C_i=B_i^{\dagger}##.
But I could not find a way to prove that ##C_i=B_i##. The relation ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0## for ##i\ne j## does not help.
Should ##\alpha_i## and ##\beta## always be symmetric? This is not given in the problem. Is there any other properties of ##\alpha_i##?
I have looked in some books. These matrices are just given directly without proof.
From the anti-commutation relation ##\{ \mathbf \alpha_i, \beta\}=0##, I can derive ##A_i=D_i=0##.
From ##\alpha_i^2=1##, I can have ##C_i=B_i^{-1}##. Furthermore, from the Hermiticity, I can have ##C_i=B_i^{\dagger}##.
But I could not find a way to prove that ##C_i=B_i##. The relation ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0## for ##i\ne j## does not help.
Should ##\alpha_i## and ##\beta## always be symmetric? This is not given in the problem. Is there any other properties of ##\alpha_i##?
I have looked in some books. These matrices are just given directly without proof.