- #1
Karim Habashy
- 33
- 1
Hi All,
My question goes as follows:
Suppose that, we charge a conducting very thin spherical shell in 'empty space' with a charge equivalent to 16 electrons. The radius (R) of the shell is 20 light years. We wait 20+ years for the electrons to reach equilibrium. Then, we approach one electron on the shell (lets assume one knows the exact position of this electron) while having a shielded electron (q) in hand and at a distance of 1nm we set the electron free from its shielding, so that both electrons now are 1nm apart (at what we can call time = 0).
So the question is, what is the force on the free electron at that time ?, according to the electrostatics of a charged spherical shell its E(R)*q, where E(R) = 16*q/4πε*R^2.
My question goes as follows:
Suppose that, we charge a conducting very thin spherical shell in 'empty space' with a charge equivalent to 16 electrons. The radius (R) of the shell is 20 light years. We wait 20+ years for the electrons to reach equilibrium. Then, we approach one electron on the shell (lets assume one knows the exact position of this electron) while having a shielded electron (q) in hand and at a distance of 1nm we set the electron free from its shielding, so that both electrons now are 1nm apart (at what we can call time = 0).
So the question is, what is the force on the free electron at that time ?, according to the electrostatics of a charged spherical shell its E(R)*q, where E(R) = 16*q/4πε*R^2.
Last edited: