The Road to Reality - exercise on scalar product

In summary, "The Road to Reality - exercise on scalar product" explores the concept of the scalar product (or dot product) in vector mathematics. It provides exercises that illustrate how the scalar product quantifies the angle between vectors and the projection of one vector onto another. The content emphasizes the geometric and algebraic interpretations of the scalar product, enhancing understanding of its applications in physics and engineering.
  • #36
cianfa72 said:
Btw, even in ##\mathbb R^n## if one picks a non-standard affine connection (i.e. a non Levi-Civita connection), then ##\nabla_{\nu} \nabla_{\mu}f## doesn't commute as well.
As long as the torsion is not zero.
 
  • Like
Likes cianfa72
Physics news on Phys.org
  • #37
Just for practice I did the explicit calculation. From here covariant derivative start from a 1-form ##\theta = \theta_{\eta}dx^{\eta}## written in the chart with coordinates ##\{ x^{\eta} \}##.

The gradient ##\nabla f## is by definition the 1-form/covector field ##\nabla f = \left ( \partial_{\mu} f \right ) dx^{\mu}##. Hence $$\nabla_{\nu} \nabla_{\mu} f = (\nabla \nabla f)_{\nu \mu} = \left ( \nabla ((\partial_{\eta}f) dx^{\eta}) \right )_{\nu \mu}= \left ( \partial_{\nu} \partial_{\mu}f - (\partial_{\eta}f)\Gamma^{\eta}_{ \mu \nu} \right ) dx^{\nu} \otimes dx^{\mu}$$
From the above we can see that whether the connection ##\Gamma## is symmetric in the lower indices (or vanish) in such coordinates (hence in all coordinates) then ##\nabla_{\nu} \nabla_{\mu} f = \nabla_{\mu} \nabla_{\nu} f## i.e. they commute.
 
Last edited:

Similar threads

Back
Top