- #1
alba_ei
- 39
- 1
The Same Integral... Two Different Answers!
[tex] \int \frac{\tan x}{\cos^5 x} \,dx [/tex]
Solution 1
[tex] \int \frac{\tan x}{\cos^5 x} \,dx = \int \frac{\sin x}{\cos^6 x} [/tex]
[tex]u = \cos x \,\,\,\, du = -\sin x \,dx [/tex]
[tex]= -\int u^-^5 \,du = \frac{1}{4 u^4} + C [/tex]
Answer 1: [tex] \frac{1}{4 \cos^4 x} + C [/tex]
Solution 2
[tex] \int \frac{\tan x}{\cos^5 x} \,dx = \int \tan x \sec^4 x \,dx = \int \tan x (1 + \tan^2 x) \sec^2 x \,dx [/tex]
[tex]u = \tan x \,\,\,\, du = \sec^2 x \,dx [/tex]
[tex] = \int \(u + u^3) \,du = \frac{1}{2} u^2 + \frac{1}{4} u^4 + C [/tex]
Answer 2: [tex] \frac{1}{2} \tan^2 x + \frac{1}{4} \tan^4^ x + C[/tex]
Wich one is right and why?
Homework Statement
[tex] \int \frac{\tan x}{\cos^5 x} \,dx [/tex]
The Attempt at a Solution
Solution 1
[tex] \int \frac{\tan x}{\cos^5 x} \,dx = \int \frac{\sin x}{\cos^6 x} [/tex]
[tex]u = \cos x \,\,\,\, du = -\sin x \,dx [/tex]
[tex]= -\int u^-^5 \,du = \frac{1}{4 u^4} + C [/tex]
Answer 1: [tex] \frac{1}{4 \cos^4 x} + C [/tex]
Solution 2
[tex] \int \frac{\tan x}{\cos^5 x} \,dx = \int \tan x \sec^4 x \,dx = \int \tan x (1 + \tan^2 x) \sec^2 x \,dx [/tex]
[tex]u = \tan x \,\,\,\, du = \sec^2 x \,dx [/tex]
[tex] = \int \(u + u^3) \,du = \frac{1}{2} u^2 + \frac{1}{4} u^4 + C [/tex]
Answer 2: [tex] \frac{1}{2} \tan^2 x + \frac{1}{4} \tan^4^ x + C[/tex]
Wich one is right and why?
Last edited: