- #1
Suvadip
- 74
- 0
To prove that
\(\displaystyle sin^{-1}(ix)=2n\pi\pm i log(\sqrt{1+x^2}+x)\)
I can prove \(\displaystyle sin^{-1}(ix)=2n\pi+ i log(\sqrt{1+x^2}+x)\)
but facing problem to prove
\(\displaystyle sin^{-1}(ix)=2n\pi- i log(\sqrt{1+x^2}+x)\)
Help please
\(\displaystyle sin^{-1}(ix)=2n\pi\pm i log(\sqrt{1+x^2}+x)\)
I can prove \(\displaystyle sin^{-1}(ix)=2n\pi+ i log(\sqrt{1+x^2}+x)\)
but facing problem to prove
\(\displaystyle sin^{-1}(ix)=2n\pi- i log(\sqrt{1+x^2}+x)\)
Help please
Last edited by a moderator: