- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following exercise:
$$\sigma=(1 \ \ \ 2 \ \ \ 3), \ \ \ \tau=(1 \ \ \ 4) \ \ \ \in S_4$$
Calculate the following permutations and notice that they are different from each other and also different from $\sigma, \tau, id$. Show that the subgroup of $S_4$ that is generated from $\sigma, \tau $ (that means $<\sigma,\tau>$) is the whole $S_4$.
The permutations are the following:
$$ \ \ \ \ \ \ \ \sigma= \begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{pmatrix} , \ \ \ \ \ \ \ \ \ \ \ \ \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \ \ \sigma^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{pmatrix}$$
$$\ \ \ \ \ \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \tau \sigma=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \sigma^2 \tau= \begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{pmatrix}$$
$$\ \ \ \tau \sigma^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \tau \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{pmatrix}, \ \ \ \ \ \ \ (\tau \sigma \tau)^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{pmatrix}$$
$$\tau \sigma \tau \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{pmatrix}, \ \ \sigma \tau \sigma^2 \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{pmatrix}, \ \ \ (\sigma \tau \sigma^2 \tau)^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix}$$
How can we show that the subgroup of $S_4$, $<\sigma,\tau>$ is the whole $S_4$?? (Wondering)
We know that $|S_4|=4!=24$
From Lagrange, the order of each subgroup divides the order of the group.
So $|<\sigma,\tau>| \in \{1,2,3,4,6,8,12,24\}$ and we want to show that the order of this subgroup is equal to $24$, don't we?
How can we do that?? (Wondering)
I am looking at the following exercise:
$$\sigma=(1 \ \ \ 2 \ \ \ 3), \ \ \ \tau=(1 \ \ \ 4) \ \ \ \in S_4$$
Calculate the following permutations and notice that they are different from each other and also different from $\sigma, \tau, id$. Show that the subgroup of $S_4$ that is generated from $\sigma, \tau $ (that means $<\sigma,\tau>$) is the whole $S_4$.
The permutations are the following:
$$ \ \ \ \ \ \ \ \sigma= \begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{pmatrix} , \ \ \ \ \ \ \ \ \ \ \ \ \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \ \ \sigma^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{pmatrix}$$
$$\ \ \ \ \ \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \tau \sigma=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \ \ \ \sigma^2 \tau= \begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{pmatrix}$$
$$\ \ \ \tau \sigma^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{pmatrix}, \ \ \ \ \ \ \ \tau \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{pmatrix}, \ \ \ \ \ \ \ (\tau \sigma \tau)^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{pmatrix}$$
$$\tau \sigma \tau \sigma \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{pmatrix}, \ \ \sigma \tau \sigma^2 \tau=\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{pmatrix}, \ \ \ (\sigma \tau \sigma^2 \tau)^2=\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix}$$
How can we show that the subgroup of $S_4$, $<\sigma,\tau>$ is the whole $S_4$?? (Wondering)
We know that $|S_4|=4!=24$
From Lagrange, the order of each subgroup divides the order of the group.
So $|<\sigma,\tau>| \in \{1,2,3,4,6,8,12,24\}$ and we want to show that the order of this subgroup is equal to $24$, don't we?
How can we do that?? (Wondering)
Last edited by a moderator: