- #1
Llukis
- 19
- 8
- TL;DR Summary
- How to write the time evolution of a Hamiltonian
Dear everybody,
Let me ask a question regarding the unitary time evolution of a given Hamiltonian.
Let's start by considering a Hamiltonian of the form ##H(t) = H_0 + V(t)##. Then, I move to the interaction picture where the Schrödinger equation is written as
$$ i\hbar \frac{d}{dt} |\psi^\prime(t)\rangle = V^\prime (t) |\psi^\prime(t)\rangle \: , $$
where ##|\psi^\prime(t)\rangle = \exp \big( i H_0 t/\hbar \big)|\psi(t)\rangle = U^\dagger_0(t) |\psi(t)\rangle## and ## V^\prime (t) = U_0^\dagger (t) V(t) U_0(t)##. The solution of this equation in the interaction picture is of the form
$$|\psi^\prime(t)\rangle = U_I (t)|\psi^\prime(0)\rangle \: ,$$
with the unitary evolution operator defined as
$$U_I(t) = \mathcal{T} \exp \bigg( -\frac{i}{\hbar}\int_0^t V^\prime (t^\prime) dt^\prime\bigg) \: ,$$
where I have introduced the time ordering operator ##\mathcal{T}##. So far, so good. My question is if then I can declare that the following is true:
$$V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t) \: .$$
Perhaps, it is a simple question but I would like to clear up my doubt.
Thanks to all of you in advance
Let me ask a question regarding the unitary time evolution of a given Hamiltonian.
Let's start by considering a Hamiltonian of the form ##H(t) = H_0 + V(t)##. Then, I move to the interaction picture where the Schrödinger equation is written as
$$ i\hbar \frac{d}{dt} |\psi^\prime(t)\rangle = V^\prime (t) |\psi^\prime(t)\rangle \: , $$
where ##|\psi^\prime(t)\rangle = \exp \big( i H_0 t/\hbar \big)|\psi(t)\rangle = U^\dagger_0(t) |\psi(t)\rangle## and ## V^\prime (t) = U_0^\dagger (t) V(t) U_0(t)##. The solution of this equation in the interaction picture is of the form
$$|\psi^\prime(t)\rangle = U_I (t)|\psi^\prime(0)\rangle \: ,$$
with the unitary evolution operator defined as
$$U_I(t) = \mathcal{T} \exp \bigg( -\frac{i}{\hbar}\int_0^t V^\prime (t^\prime) dt^\prime\bigg) \: ,$$
where I have introduced the time ordering operator ##\mathcal{T}##. So far, so good. My question is if then I can declare that the following is true:
$$V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t) \: .$$
Perhaps, it is a simple question but I would like to clear up my doubt.
Thanks to all of you in advance
Last edited: