- #1
Buckethead
Gold Member
- 560
- 38
- TL;DR Summary
- Twins paradox and GPS equivalent?
In a thread I started awhile back, in the common twins paradox scenario, it was indicated to me that the actual time (paraphrasing) on Earth for any given time in the ship is basically “undefined” (as it can’t be verified) and/or time dilated (ticking slower) for the trip out and then shifted to having advanced quickly for the trip back resulting in an older twin on Earth. In other words, it will be symmetrical (time dilation as seen from either twin) but not “real” or “verifiable” until the trip is complete in which case there in an asymmetry in rate of time resulting in the Earth twin being older (due to the frame change of the space ship).
However….In a GPS system, the time dilation is real and verifiable and is asymmetric. The orbiting satellite clock ticks more slowly, all the time, and this can be measured at any time. In addition from the point of view of the satellite the Earth clock is ticking faster and this also can be measured. Because of this the GPS clock is adjusted for the speed difference until the clocks both tick one second per second Earth time.
As a side note, both the satellite and (if you like) even the ground clock are inertial if you drop the ground clock during this experiment at the moment of dropping, although it’s not necessary since being non inertial or inertial for the ground clock has no effect on the rate of the clock when the clock is not moving (just dropped for example or sitting on the ground). Just trying to eliminate that possible objection).
So what I’d like to know is, if the GPS scenario and the twins paradox (for outgoing trip only) are equivalent, then the outgoing ship should see the Earth ticking faster, not slower, and the clock should be measurable or in the very least calculatable as it is in GPS. However it is not depicted this way. Why?
However….In a GPS system, the time dilation is real and verifiable and is asymmetric. The orbiting satellite clock ticks more slowly, all the time, and this can be measured at any time. In addition from the point of view of the satellite the Earth clock is ticking faster and this also can be measured. Because of this the GPS clock is adjusted for the speed difference until the clocks both tick one second per second Earth time.
As a side note, both the satellite and (if you like) even the ground clock are inertial if you drop the ground clock during this experiment at the moment of dropping, although it’s not necessary since being non inertial or inertial for the ground clock has no effect on the rate of the clock when the clock is not moving (just dropped for example or sitting on the ground). Just trying to eliminate that possible objection).
So what I’d like to know is, if the GPS scenario and the twins paradox (for outgoing trip only) are equivalent, then the outgoing ship should see the Earth ticking faster, not slower, and the clock should be measurable or in the very least calculatable as it is in GPS. However it is not depicted this way. Why?