The Universal Property of the Direct Product in Groups

In summary, the direct product of two groups is a group that has two group homomorphisms, one from each group to the resulting group. The two homomorphisms are both surjective, and there is a unique isomorphism between them.
  • #1
Deveno
Science Advisor
Gold Member
MHB
2,726
6
With groups, one often seeks to create larger groups out of smaller groups, or the reverse: break down large groups into easier-to-understand pieces. One construction often employed in this regard is the direct product. The normal way this is done is like so:

The direct product of two groups $(G,\ast)$ and $(H,\ast')$ is defined to be the set:

$G \times H = \{(g,h): g \in G, h \in H\}$

together with the binary operation:

$(g,h)\star(g',h') = (g\ast g',h\ast' h')$ for all $g,g' \in G$ and $h,h' \in H$.

One then goes to show that $\star$ is associative, that $(e_G,e_H)$ is an identity for this group and that for each $(g,h)$ that $(g^{-1},h^{-1})$ is an inverse.

I want to discuss another way, and show that it is "essentially the same" as the above. This may seem a bit strange at first, so I will try to illuminate it as best I can, as we go along.

We define a direct product $P$ of the two groups $G,H$ to be:

1. A group $P$, along with:
2. Two group homomorphisms $p_1:P \to G$ and $p_2: P \to H$ such that:
3. If $K$ is ANY other group, along with ANY pair of group homomorphisms $f_1:K \to G$ and $f_2:K \to H$, there is a UNIQUE homomorphism:

$\phi:K \to P$ so that: $p_1 \circ \phi = f_1$ and $p_2 \circ \phi = f_2$

Some initial comments: first, note I said "a" direct product, not "the" direct product. It is thus conceivable we might have more than one, or perhaps none at all. It is not clear from 1-3, that any group whatsoever satisfies these properties, or that even if one does, it is unique. We shall see that the former is true, and the latter not quite so true.

Before we go any further, I will state two assertions about $P$ that are not obvious at all, from 1-3.

Lemma 1: there exist unique distinguished injections $G \to P$ and $H \to P$.

Lemma 2: $p_1,p_2$ are surjective.

Both of these assertions will follow from the following basic fact about functions:

If $f \circ g$ is bijective, then $f$ is surjective, and $g$ is injective. If you do not believe this, I urge you to prove it on your own (it's not that hard, really).

To see this, suppose $K = G$, with $f_1: G \to G$ the identity map, and $f_2: G \to H$ the trivial map that sends everything to $e_H$. From our definition of $P$ (if it exists), we see that we have a unique homomorphism:

$\phi_1:G \to P$ with:

$p_1 \circ \phi_1 = 1_G$.

Now the identity map on $G$ is clearly a bijection, which shows that $\phi_1$ is the unique distinguished injection we claimed existed in lemma 1, and that $p_1$ is a surjection, as claimed in lemma 2.

We can do a similar thing with $H$.

Note that we have, just from what we've defined so far, something else:

$p_2 \circ \phi_1 = 0$ (using "$0$" to mean $0(g) = e_H$, for all $g \in G$), that is:

$\text{im }\phi_1 \subseteq \text{ker }p_2$.

Our next result is as good as we can get regarding uniqueness of a direct product:

Theorem 1: If $P,P'$ are two direct products of $G$ and $H$, then $P \cong P'$.

To see this, suppose first that $P$ is a direct product, and let $K = P'$, with the two maps:

$p_1':P' \to G$
$p_2': P' \to H$

that $P'$ comes with (also being a direct product).

We thus have a unique homomorphism $\psi: P' \to P$ (with, of course, $p_1 \circ \psi = p_1'$ and $p_2 \circ \psi = p_2'$).

Exchanging the places of $P$ and $P'$ we also have a unique homomorphism: $\theta: P \to P'$ (and with $p'_1 \circ \theta = p_1$ and $p_2' \circ \theta = p_2$).

Composing the two gives a homomorphism: $\psi \circ \theta: P \to P$. Note that we have:

$p_1 \circ \psi \circ \theta = p_1' \circ \theta = p_1$
$p_2 \circ \psi \circ \theta = p_2' \circ \theta = p_2$

Now, consider $K = P$ along with the two maps:

$f_1: P \to G$ given by: $f_1 = p_1$
$f_2: P \to G$ given by: $f_1 = p_2$

We have a UNIQUE homomorphism $\phi: P \to P$ such that $p_1 \circ \phi = p_1$ and $p_2 \circ \phi = p_2$.

Since the identity homomorphism makes this true, it must be (by uniqueness) that $\phi = 1_P$.

Since this is also true of the homomorphism $\psi \circ \theta$, it must be true that $\psi \circ \theta = 1_P$.

A similar argument shows $\theta \circ \psi = 1_{P'}$, so these are both bijective homomorphisms, that is: isomorphisms.

Now, not only does this establish that any two direct products of $G$ and $H$ are isomorphic, but also: there is a uniquely defined isomorphism between them.

Theorem 2: $G \times H$ (our "old" definition of direct product) is a direct product of $G$ and $H$ (under our "new" definition).

Clearly, condition 1 is satisfied, but we need to find a pair of group homomorphisms to serve as our $p_1,p_2$. However, we don't have to look far, let:

$\pi_1: G\times H \to G$ be defined by: $\pi_1(g,h) = g$
$\pi_2: G\times H \to H$ be defined by: $\pi_2(g,h) = h$.

Now, we have to show that given any other group $K$ along with two homomorphisms:

$f_1: K \to G$
$f_2: K \to H$

we can find a UNIQUE homomorphism $\phi:K \to G \times H$ with:

$\pi_1 \circ \phi = f_1$
$\pi_2 \circ \phi = f_2$.

Let's focus on what $\phi$ would have to be, first (if it indeed exists). Suppose $\phi(k) = (g_k,h_k)$.

Then $g_k = \pi_1(g_k,h_k) = \pi_2(\phi(k)) = (\pi_1 \circ \phi)(k) = f_1(k)$, and similarly, we must have $h_k = f_2(k)$.

So, just as a FUNCTION, we must have: $\phi(k) = (f_1(k),f_2(k))$.

Is this a homomorphism?

$\phi(kk') = (f_1(kk'),f_2(kk')) = (f_1(k)f_1(k'), f_2(k)f_2(k')) = (f_1(k),f_2(k))(f_1(k'),f_2(k')) = \phi(k)\phi(k')$. So, yes, yes it is.

So this $\phi$ is clearly the ONLY homomorphism we could have, and it works (yay!). Now we can establish:

Theorem 3: For a direct product $P$ of $G$ and $H$, and the unique monomorphism $\phi_1: G \to P$:

$H \cong P/\phi_1(G)$ (a similar statement holds for $G$ and $H$ swapping places).

Consider the isomorphism $\psi:G\times H \to P$.

We have the uniquely defined injection:

$i_1: G \to G \times H$ given by $g \mapsto (g,e_H)$.

Since, for any $(a,b) \in G \times H$, we have:

$(a,b)(g,e_H)(a,b)^{-1} = (a,b)(g,e_H)(a^{-1},b^{-1}) = (aga^{-1},e_H)$

it follows that the image under $i_1$ of $G$ in $G \times H$ (namely: $G \times \{e_H\}$) is a normal subgroup of $G \times H$.

Thus $\psi(G \times \{e_H\}) = \phi_1(G)$ is a normal subgroup of $\psi(G \times H) = P$.

As we saw before, it is clear that $\text{im }i_1 \subseteq \text{ker }\pi_2$.

Now however, we see as well that if $(g,h) \in \text{ker }\pi_2$, that $h = e_H$, and thus that:

$(g,h) \in G \times \{e_H\} = \text{im }i_1$.

This means $\text{ker }\pi_2 = \text{im }i_1$, from whence we see that:

$H \cong (G \times H)/\text{ker }\pi_2 = (G \times H)/\text{im }i_1 \cong \psi(G \times H)/\psi(\text{im }i_1)$

$ = P/\phi_1(G)$.

In summary, we have a short exact sequence:

$1 \to G \stackrel{\phi_1}{\to}P \stackrel{p_2}{\to}H \to 1$

which is left-split: because we have $p_1:P \to G$ such that $p_1 \circ \phi_1 = 1_G$

This is actually a THIRD way to characterize direct products. Clearly, any direct product generates a left-split short exact sequence. Surprisingly, the converse is true:

Theorem 4:

If $1 \to A \stackrel{f}{\to} B \stackrel{g}{\to} C \to 1$ is a left-split short exact sequence, then $B$ is a direct product of $A$ and $C$.

Since the sequence is left-split, we have a homomorphism $h: B \to A$ such that $h \circ f = 1_A$.

Define $\theta: B \to A\times C$ by:

$\theta(b) = (h(b),g(b))$ (often this map is written $h \times g$).

This is a homomorphism because $h$ and $g$ are. Suppose $\theta(b) = (e_A,e_C)$. By exactness, we have: $b = f(a)$, for some $a \in A$.

Now $e_A = h(b) = h(f(a)) = (h \circ f)(a) = 1_A(a) = a$, so $b = f(e_A) = e_B$, thus $\theta$ is injective.

Now suppose that $(a,c)$ is any element of $A \times C$. Since $g$ is surjective, we can find $b \in B$ such that $g(b) = c$.

Note that $g^{-1}(\{c\}) = \{bf(a): a \in A\}$. Now if we take $x = [h(b)]^{-1}a \in A$, then:

$\theta(bf(x)) = (h(bf(x)),g(bf(x))) = (h(b)h(f(x)),g(b)g(f(x))) = (h(b)(h \circ f)(x), g(b)e_C)$

$= (h(b)x,g(b)) = (h(b)[h(b)]^{-1}a,c) = (e_Aa,c) = (a,c)$, so $\theta$ is surjective.

Note that $(\theta \circ f)(a) = (h(f(a)),g(f(a))) = (a,e_C)$ and $(\pi_2 \circ \theta)(b) = g(b)$

so that $\theta$ transforms $f$ and $g$ into the "standard" injection of $A$ into $A \times C$ and projection of $A \times C$ onto $C$.
 
Physics news on Phys.org
  • #2
Thanks @Deveno! What forum can we move this to?
 

FAQ: The Universal Property of the Direct Product in Groups

What is the Universal Property of the Direct Product in Groups?

The Universal Property of the Direct Product in Groups is a fundamental concept in abstract algebra that describes the behavior of the direct product of two or more groups. It states that the direct product of groups is the "most general" group that contains all of the original groups as subgroups.

How does the Universal Property of the Direct Product in Groups relate to other properties of groups?

The Universal Property of the Direct Product in Groups is closely related to other properties of groups, such as the commutative property and the associative property. In fact, the direct product of groups is commutative if and only if each of the individual groups is commutative, and the direct product is associative if and only if each of the individual groups is associative.

Why is the Universal Property of the Direct Product in Groups important?

The Universal Property of the Direct Product in Groups is important because it allows us to construct new groups from existing ones in a systematic and elegant way. This property also helps us understand the structure of groups and how they relate to each other.

Are there any real-world applications of the Universal Property of the Direct Product in Groups?

Yes, the Universal Property of the Direct Product in Groups has many applications in various fields, including physics and cryptography. In physics, this property is used to describe the symmetries of physical systems, and in cryptography, it is used to construct secure encryption algorithms.

Are there any limitations to the Universal Property of the Direct Product in Groups?

While the Universal Property of the Direct Product in Groups is a powerful tool in abstract algebra, it does have some limitations. For example, it does not hold for infinite direct products of groups. Additionally, it does not take into account the specific elements or operations within each group, only their overall structure.

Similar threads

Back
Top