The use of Riccati equations in optimal control theory

AI Thread Summary
The discussion focuses on the formulation of linear control theory using matrix Riccati equations, specifically the equations ##\dot{x}=Ax+Bu## and ##\dot{u}=Cx+Du##. It highlights that rewriting these equations as a matrix differential equation allows for easier solutions through diagonalization techniques. The advantage of this approach lies in its accessibility to useful mathematical methods for solving control problems. A participant shares a review paper that may provide additional insights into the topic. Overall, the use of Riccati equations in optimal control theory enhances problem-solving efficiency.
John Finn
Messages
3
Reaction score
1
I know that linear control theory, in the form ##\dot{x}=Ax+Bu##, ##\dot{u}=Cx+Du##, can be put in the form of a matrix Riccati equation. But is there really an advantage to doing so?
 
Last edited by a moderator:
Engineering news on Phys.org
Thread moved.
 
John Finn said:
I know that linear control theory, in the form ##\dot{x}=Ax+Bu##, ##\dot{u}=Cx+Du##, can be put in the form of a matrix Riccati equation. But is there really an advantage to doing so?
I don't know anything about linear control theory or matrix Riccati equations, but the above looks like linear algebra as it relates to systems of differential equations, which I do know something about.
Assuming A, B, C, and D are constants, the two equations above can be rewritten in this form:
##\begin{bmatrix}\dot x \\ \dot u \end{bmatrix} = \begin{bmatrix}A & B \\ C & D \end{bmatrix}\begin{bmatrix} x \\ u \end{bmatrix}##

The advantage of writing the system in this form is that this matrix differential equation can be solved for x and u by diagonalizing the 2 x 2 matrix I wrote using standard techniques.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top