The velocity of a satellite rotating around the Earth

AI Thread Summary
The discussion centers on the confusion regarding the calculation of a satellite's velocity in relation to its distance from Earth. Participants clarify that the variable 'r' should represent the distance from the Earth's center, not just the altitude. It is noted that if gravity is assumed to be 9.2 m/s², the satellite's distance from the Earth's center would be 6580 km. However, if the altitude is indeed 6580 km, the gravitational acceleration would be approximately 2.38 m/s². Accurate definitions and calculations are essential for understanding satellite motion.
yashboi123
Messages
17
Reaction score
0
Homework Statement
A satellite travels at an altitude of 6580 km where gravity is 9.2 m/s^2.
Relevant Equations
v^2/r = a
1694914128479.png

Not sure what r would be in this scenario. I tried adding the radius of the earth to the altitude but that wasn't correct either.
 
Physics news on Phys.org
It looks like r is just the 'altitude'.
 
yashboi123 said:
Not sure what r would be in this scenario. I tried adding the radius of the earth to the altitude but that wasn't correct either.
Please show your work. We cannot help you if you don't tell us what you did.
 
The confusion is in the question itself.

If gravity is 9.2 m/s^2 (as stated in the question), then satellite distance from earth center is 6580km (verify yourself!). And that distance should not be called altitude :-(

If altitude is really 6580km, g is about 2.38 m/s^2.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top