- #1
chester20080
- 56
- 1
We consider a matrix A, NxN.Show that if for every NxN matrix B we have AB=BA,then the matrix A is of the form:A=γI.
When I first looked at this exercise,the first I thought was to assume that A=γI is true and replace A in AB=BA=>γB=Bγ=γB,which is true.But then I noticed that I have "=>" and not "<=>",so,since it just can't be that easy and simple,I guessed that's wrong.Any thoughts?
When I first looked at this exercise,the first I thought was to assume that A=γI is true and replace A in AB=BA=>γB=Bγ=γB,which is true.But then I noticed that I have "=>" and not "<=>",so,since it just can't be that easy and simple,I guessed that's wrong.Any thoughts?
Last edited: