Undergrad The Wedge Product .... Tu, Section 3.7

Click For Summary
The discussion focuses on understanding the wedge product as explained in Loring W. Tu's "An Introduction to Manifolds," particularly Section 3.7. Participants analyze the statement regarding permutations in the context of wedge products, specifically how permutations of arguments contribute to the sum in the wedge product formula. An example is developed to illustrate the permutations involved, leading to questions about the correctness of the analysis and the role of the sign function in ensuring that different permutations yield the same term. Clarifications indicate that the author may have misused notation, and the signs from the permutations ultimately cancel each other out, confirming the contributions are equivalent. The discussion emphasizes the importance of understanding the relationship between permutations and their effects on the wedge product.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Loring W.Tu's book: "An Introduction to Manifolds" (Second Edition) ...

I need help in order to fully understand Tu's section on the wedge product (Section 3.7 ... ) ... ...

The start of Section 3.7 reads as follows:
?temp_hash=95e2e678b5cea7a98901538248d96796.png


In the above text from Tu we read the following:

" ... ... for every permutation ##\sigma \in S_{ k + l }##, there are ##k!## permutations ##\tau## in ##S_k## that permute the first ##k## arguments ##v_{ \sigma (1) }, \cdot \cdot \cdot , v_{ \sigma (k) }## and leave the arguments of ##g## alone; for all ##\tau## in ##S_k##, the resulting permutations ##\sigma \tau## in ##S_{ k + l }## contribute the same term to the sum, ... ... "Since I did not completely understand the above quoted statement I developed an example with ##f \in A_2 (V)## and ##g \in A_3 (V)## ... ... so we have##f \wedge g ( v_1 \cdot \cdot \cdot v_5) ##

## = \frac{1}{2!} \frac{1}{3!} \sum_{ \sigma \in S_5 } f ( v_{ \sigma (1) }, v_{ \sigma (2) } ) g( v_{ \sigma (3) }, v_{ \sigma (4) }, v_{ \sigma (5) } )##Now ... translating Tu's quoted statement above into the terms of the example we have ... ...

" ... for every permutation ##\sigma \in S_{ 2 + 3 }## there are ##2! = 2## permutations ##\tau## in ##S_2## that permute the first ##2## arguments ##v_{ \sigma (1) }, v_{ \sigma (2) }## and leave the arguments of ##g## alone ... ... "

Now, following the above quoted text ... consider a specific permutation ##\sigma## ... say## \sigma_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##Now there are ##2!= 2## permutations ##\tau## in ##S_2## that permute the first ##k = 2## arguments ##( v_{ \sigma (1) }, v_{ \sigma (2) } ) = ( v_2, v_3 )## ...

[Note ... one of the ##k!## permutations is essentially ##\sigma_1## itself ... ]

These permutations may be represented by (is this correct?)

... in ##S_2## ...

##\tau_1 = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}##

##\tau_2 = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}##and in ##S_{ 2 + 3 }## ...## \tau_1 = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##

## \tau_2 = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 3 & 2 & 4 & 5 & 1 \end{bmatrix}##Now the resulting permutations ##\sigma \tau## are supposed to contribute the same term to the sum ...... ... ##\sigma_1 \tau_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##

## = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##and## \sigma_1 \tau_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 3 & 2 & 4 & 5 & 1 \end{bmatrix}#### = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix} ##
Now the two permutations are not identical ... but ... maybe the difference is accounted for in the ##( \text{ sgn } ) ## function somehow ... but how ... ?
Can someone please clarify the above ...

... ... could someone also confirm that the above analysis is basically correct ... ?

Peter
 

Attachments

  • Tu - Start of Section 3.7 ... Wedge Product ... ... .png
    Tu - Start of Section 3.7 ... Wedge Product ... ... .png
    56.8 KB · Views: 517
  • ?temp_hash=95e2e678b5cea7a98901538248d96796.png
    ?temp_hash=95e2e678b5cea7a98901538248d96796.png
    56.8 KB · Views: 733
Physics news on Phys.org
Math Amateur said:
" ... ... for every permutation ##\sigma \in S_{ k + l }##, there are ##k!## permutations ##\tau## in ##S_k## that permute the first ##k## arguments ##v_{ \sigma (1) }, \cdot \cdot \cdot , v_{ \sigma (k) }## and leave the arguments of ##g## alone; for all ##\tau## in ##S_k##, the resulting permutations ##\sigma \tau## in ##S_{ k + l }## contribute the same term to the sum, ... ... "
I think there is a bit of abuse of notation from the author there. What he means that there is a perm ##\tau\in S_{k+l}## (not ##S_k##) that permutes the first ##k## elements and is the identity map on the last ##l## elements. So the two possible values for ##\tau## are ##\tau_1 =##(1 2 3 4 5) and##\tau_2=## (2 1 3 4 5).
If ##\sigma## is (5 1 3 4 2) then
##\sigma\tau_1=##(5 1 3 4 2)(1 2 3 4 5) = (5 1 3 4 2)
and
##\sigma\tau_2=##(5 1 3 4 2)(2 1 3 4 5) = (1 5 3 4 2)

In this case the two terms in the sum (3.5) from this ##\sigma## are:

##\textrm{sgn} (\sigma\tau_1) f(v_5, v_1) g(v_3,v_4,v_2)
= \textrm{sgn} (\sigma)\textrm{sgn}(\tau_1) f(v_5, v_1) g(v_3,v_4,v_2)##
and
##\textrm{sgn} (\sigma\tau_2) f(v_1, v_5) g(v_3,v_4,v_2)
= \textrm{sgn} (\sigma)\textrm{sgn}(\tau_2) f(v_1, v_5) g(v_3,v_4,v_2)##
and the signs of both the second 'sgn' piece and the ##f## piece change between the two, cancelling each other out and making the values the same.
 
  • Like
Likes Math Amateur

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K